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ABSTRACT 

Nosie measurement in strongly correlated system 
by 

Liyang Chen 

Noise comes from the current or voltage fluctuations in devices. The three most common 

types of noise are thermal noise, 1/f noise, and shot noise. Correctly interpreting noise 

signal can provide extra information beyond common electron transport experiments. In 

this thesis, we used the noise signal to study the strongly correlated materials, and found 

interesting results in two different systems, a Mott insulator and a strange metal. This 

thesis starts from introduction of three common types of noise and their applications in 

Chapter 1, followed by the introduction of the Mott insulator in Chapter 2 and the strange 

metal in Chapter 3, especially V2O3 and YbRh2Si2 respectively. Then I introduce our 

noise measurement setup and calibration process in Chapter 4. In Chapter 5, we show our 

study of percolation and nano second fluctuators in the V2O3 metal insulator transition, 

through measuring both the low frequency(below 1MHz) and high frequency(10MHz-

1GHz) 1/f noise spectrum dependence on bias and temperature. In Chapter 6, we shows 

our finding of strongly suppressed shot noise intensity in a YbRh2Si2 nanowire compared 

with a gold nanowire, and this may indicate the lack of well-defined quasiparticles in this 

strange metal. In Chapter 7, we discussed possible follow-up research based our projects. 

Supplementary information including probe design and experiments tips are attached in 

Appendix.
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Chapter 1 

Electronic noise 

Electronic noise is the random fluctuations of the voltage or the current through 

an electrical device. The most common types of noise are thermal noise, 1/f noise (also 

known as flicker noise) , and shot noise. In this section, I introduce each type of noise and 

their related works. 

1.1. Thermal noise 

Thermal noise is also called Johnson–Nyquist noise. It was predicted since the 

Einstein’s study of Brownian motion in 1906 [1], It was discovered experimentally by 

John B. Johnson in 1928 [2], and H. Nyquist performed the theoretical derivation of 

Johnson noise at the same time [3]. Classically Johnson-Nyquist noise comes from the 

random movement of electrons in an electrical device because of their Brownian motion. 

H. Nyquist calculated the thermal noise by means of thermodynamics and statistical 
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mechanics. Here I briefly introduce how H. Nyquist did the derivation. Consider a circuit 

(Figure 1.1) made up with two identical resistors 𝑅1 and 𝑅2 with resistance 𝑅 at same 

temperature 𝑇 , and they are connected with non-dissipative wires of length 𝑙  with 

characteristic impedance 𝑅. Let the speed of energy propagation be 𝑣. When the system 

enters thermal equilibrium state, the energy transmission from 𝑅1 to 𝑅2 must be equal to 

the energy transmission from 𝑅2 to 𝑅1. If we isolate the line from the resistors after the 

thermal equilibrium established, there would be complete energy reflection at the two 

ends and the energy would be trapped in the line. Now, we can describe the line as a one-

dimensional cavity. The frequency of each resonant mode is 𝑛𝑣/2𝑙 , where 𝑛  is any 

integer greater than zero, and by classical equipartition each mode contains average 

energy 𝑘𝐵𝑇, where 𝑘𝐵  is Boltzmann’s constant. So the total energy within frequency 

interval 𝑑𝑓 is 2𝑙𝑘𝐵𝑇𝑑𝑓/𝑣. This stored energy is the energy transmission happening in 

time period 𝑙/𝑣 and contains the contributions from both from  𝑅1 to 𝑅2 and 𝑅2 to 𝑅1. 

The power transferred from one resistor to another within frequency interval 𝑑𝑓  is 

𝑘𝐵𝑇𝑑𝑓. If we model that this power comes from a voltage source along with the resistor, 

we find: 

 𝑆𝑉𝑑𝑓 = 4𝑘𝐵𝑇𝑅𝑑𝑓 or 𝑆𝑉 = 4𝑘𝐵𝑇𝑅 1-1 

where 𝑆𝑉(𝑓)  voltage noise power density (V2/Hz). This is the common equation of 

thermal noise in the voltage form, it also can be expressed in current form as 𝑆𝐼 =

4𝑘𝐵𝑇/𝑅. One important feature is the thermal noise intensity is frequency independent. It 

is a white noise with constant value through the frequency domain, in the classical limit.   
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Figure 1-1 [1]: Diagram of two resistors transfering thermal energy through 

transmission line of length 𝑙. 

The equation above is calculated based on the classical equipartition result that 

each electromagnetic mode has energy 𝑘𝐵𝑇. If we consider the proper quantum canonical 

distribution, the average energy of each mode would be ℎ𝑓
𝑒ℎ𝑓/𝑘𝐵𝑇−1

  [3], and the thermal 

noise expression would be 

 
𝑆𝑉(𝑓) =

4ℎ𝑓𝑅
𝑒ℎ𝑓/𝑘𝐵𝑇 − 1

 
1-2 

 

where ℎ is Plank’s constant. When ℎ𝑓/𝑘𝐵𝑇 is much smaller than 1, which is true in this 

thesis, the formula above reduces to the classical result, 𝑆𝑉(𝑓) = 4𝑘𝐵𝑇𝑅.  For a sense of 

scale, T = 1 K corresponds to a frequency crossover of approximately 20 GHz, above 

which deviations from white noise would be expected. 

The equivalent circuit diagram of a resistor with thermal noise is shown in Figure 

1.2. 𝑅  is an ideal stable resistor without resistance fluctuation. This system can be 
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modeled as an equivalent stable constant resistor 𝑅 in series with a voltage noise source 

𝑉𝑛𝑜𝑖𝑠𝑒 or a stable constant resistor 𝑅 in parallel with a current noise source 𝐼𝑛𝑜𝑖𝑠𝑒. 

 

 

Figure 1-2: Diagram of equivalent electrical circuits of thermal noise of a stable 

resistor. 

Thermal noise is universal in all devices and it decides the limit of signal to noise 

ratio in any measurement. The only way to reduce it is to lower the temperature. 

Although people in many industries, like communication [4], circuit design [5,6], and 

even biology [7,8], are annoyed by the existence of thermal noise, researchers have ways 

to utilize it. The most common usage is thermometry [9–12].  

Using thermal noise to measure temperature has its own advantages and 

disadvantages. First, on the positive side, it does not require driving currents, on 

compared to other thermal sensors, so the heat dissipation can be reduced to a minimum, 

making noise thermometry a good candidate for low temperatures [13]. This was first 

realized in measuring lambda point of helium in 1959 [14] and recent advanced 

techniques has made it able to measure temperatures down to below 50 μK  [15]; 
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Secondly, since the thermal noise intensity is only decided by the real part of impedance 

and temperature, the sensor itself can be cheap and easy to obtain. In situations where the 

thermal sensors have to be placed in harsh environment like high temperature and 

corrosive, normal sensors will need to be replaced and recalibrated frequently, but 

thermal noise sensors don’t need calibration beyond a resistance measurement because of 

universally well-defined intensity [9]; Thirdly, thermal noise can be used to directly 

measure the sample temperature. In real situations, no matter how close the thermal 

sensor to your sample, you cannot guarantee the temperature reading from the thermal 

sensor is exactly same as the local temperature of the sample. However, measuring the 

resistance and thermal noise of your sample can directly derive the local temperature of 

your sample. 

Apart from the advantages mentioned above, the noise thermometry has some 

drawbacks making it less common. Firstly, the thermal noise signal is often small due to 

its nature. Unlike other thermal sensors, noise thermometry measures the current(voltage) 

fluctuation rather than current(voltage) itself, and this tiny signal can be easily corrupted 

by other noise such as amplifier input noise. This sets high requirements for a system that 

it must be able to measure small signals and block or eliminate unwanted noise. For 

example, people use cryogenic preamplifiers and two channels cross-correlated to reduce 

the input noise from preamplifiers. Secondly, the small size signal requires longer times 

to average. The researchers who succeeded in measuring temperature using noise 

thermometry below 50μK need 400 s averaging time to reach a statistical precision better 

than 1% for given bandwidth 100Hz [15], and agreement of better than 5% in comparison 

with standard thermometers in the entire temperature range. This means that what the 
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noise thermometer measures is the average temperature during this 400 s averaging time. 

In other words, it cannot react quickly to the temperature change. This low temperature 

thermometer data is shown in the figure below, because author use SQUID to measure 

magnetic fluctuation, so the unit is magnetic flux noise: 

 

Figure 1-3 [15]: thermal noise thermometer. (a) Log-log scale thermal noise spectra 

at different temperature(42 μK to 800mK) as noted on the right end of each curves. 

Solid line fitting is used to extract the noise intensity at low frequency. (b) 

Comparison between deduced temperature from noise thermometer(red dots) and 

standard thermometers(solid line). The data fall in the 5% error range of standard 

thermometers(dashed lines). 
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1.2. 1/f noise 

1/f noise or flicker noise is observed in almost all devices and materials [16–18]. 

Its noise spectrum from resistance fluctuations typically has a spectral density (mean 

square voltage fluctuations per unit bandwidth)  𝑆(𝑓) ~ 1/𝑓𝛼, where 𝑓 is the frequency 

and α is close to 1.   Figure 1-4 shows a typical example of 1/f noise. In log scale and the 

low frequency side, the noise intensity vs frequency has a slope of -1, and the spectrum 

becomes flat at higher frequency because of thermal noise. 
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Figure 1-4 [19]: Typical 1/𝑓 noise spectrum with thermal noise. Circles are original 

spectrum, solid line indicates the slope equals -1, dashed line stands for thermal 

noise background, and squares are the pure 1/𝑓 noise through removing the 

thermal noise.  

Because 1/𝑓 noise shows almost same frequency dependence in a lot of different 

systems, people have long tried to find a general model to explain its origin. There are 

two well-known models for now, one is raised by Hooge in 1969 [20], the other is 

proposed by McWhorter in 1957 [21].  

Hooge proposed a model with an empirical formula for homogeneous semiconductors or 

metals [20,22] 

 𝑆𝑅

𝑅2 
=

𝛼
𝑓𝑁

 
1-3 

 

Where 𝑆𝑅  is the spectral power density of the resistance ( 2/Hz), 𝑅  is the 

resistance, 𝑓  is the frequency, 𝑁  is the total number of free electrons, and 𝛼  is an 

empirical dimensionless constant. He suggested that the 1/f noise comes from the 

fluctuation of mobility of each free electron, and this mobility fluctuation mainly comes 

from the interaction of electrons and the lattice. In 1981 [16], Hooge extended his 

formula to explain the 1/f noise in MOSFETs. Although majority of results of 1/f noise 

measurements can be described by this empirical relation, his formula can not be the 

ultimate answer because of some imperfections. For example, the integration of spectra 
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from zero to infinity would diverge if the spectral always follows the form  𝑆(𝑓) ~ 1/𝑓, 

and there is no generally accepted theory so far for the Hooge formula. 

The McWhorter model is also known as the number fluctuation model. It 

suggested that the 1/f noise is caused by the trapping and detrapping of carriers. More 

generally, people extended the mechanism to multiple two-level states. The switching of 

resistance between two discrete states would cause Lorentzian noise of the form 

 𝑆𝐿(𝑓) ∝
𝜏

(2𝜋𝑓)2 + (1/𝜏)2 1-4 

 

Where 𝜏 is effective lifetime 1
𝜏
= 1

𝜏1
+ 1

𝜏2
, 𝜏1 and 𝜏2 are the lifetimes for the system 

to switch from one state to another. To produce a 1/f frequency dependence, the system 

should have a large number of two-level fluctuators of different characteristic lifetimes. 

Suppose the distribution function of 𝜏 is 𝐷(𝜏), then 

 
𝑆(𝑓) ∝ ∫

𝐷(𝜏)𝜏
(2𝜋𝑓)2 + (1/𝜏)2 𝑑𝜏 

1-5 

 

When 𝐷(𝜏)  has the form 1/𝜏 , the noise spectrum will have 1/𝑓  shape. For 

example, consider the an electron hopping between two different trap states.  If the 

switching process is simple quantum tunneling, the tunnel rate will have form 

 1
𝜏

∝
1
𝜏0

e−𝑙/𝑙0  
1-6 
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Where 𝑙 is the distance between localized traps, and 𝜏0 and 𝑙0 are two constants. 

Under the assumption that the distribution of distances is uniform, in other words 𝐷(𝑙) is 

constant, we can get 𝐷(𝜏) ∝ 1/𝜏 and 𝑆(𝑓) ∝ 1/𝑓. 

 The 1/𝑓 noise in most cases is unwanted. For example, it decreases the signal to 

noise ratio in circuit, cause decoherence in quantum information [23–25], and can 

overwhelm everything useful in low frequency side when doing spectral analysis. 

Research tried to reduce 1/𝑓  noise by many methods [26–30]; one of the easy and 

practical ways to reduce 1/ 𝑓  noise in MOSFET is using switched bias to reduce 

accumulation of charge [29,30]. 

 Apart from finding ways to reduce 1/𝑓 noise, scientists also found many ways to 

utilize it. For example, in biology, researchers use 1/𝑓 noise in the human brain and 

neurons to study the related cognitive processing speed [31] and aging [32,33]. In 

material science, 1/ 𝑓  noise can be used to extract trap density [34], mobility 

fluctuations [35], and charge density wave properties [36]. The example of finding charge 

density wave sliding in 1T − TaS2 thin film is shown below, and more details can be 

found in [36]: 
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Figure 1-5 [36]: (a)-(d) low frequency noise spectra under different bias. (a). Low 

bias range. Slope change from -1 to -2, indicating the formation of Lorentzian noise. 

The corner frequency now is very low so only the tail of Lorentzian noise is 

observed. (b). The sliding of corner frequency as bias increases. (c). The slope at low 

frequencies turns back to -1 and flat spectra because of Lorentzian noise at higher 

frequency side. (d)Lorentzian noise corner frequency increase to higher frequency 

and only 1/𝑓 noise is measured. (e). Corner frequency sliding of Lorentzian noise for 

all bias ranges. 



 30 
 

 

 

 

1.3. Shot Noise 

Shot noise is a consequence of the quantized charge, and it provides extra 

information from normal conductance measurement [18,37–40]. Electronic shot noise 

was first discovered by Walter Schottky in the study of current fluctuation in vacuum 

tube in 1918 [41]. Unlike thermal noise which comes from thermal fluctuation, shot noise 

needs driving current to make electrons move. If you observe one point in a system with 

sufficient time resolution and count the electron arrival, the current is not continuous as 

water flow, but rather a discrete chain of events. If electrons’ movements are not affected 

by other electrons, and their arrival time to the point you observe are independent to each 

other, the arrival time intervals in this situation are described by Poisson distribution and 

the corresponding noise is Poissonian noise or classic shot noise. The whole time series 

can be regarded as a sum of discrete 𝛿 functions with integral of each peak equal to a 

single charge carrier 𝑞, one example is shown in Figure 1-6 below.  
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Figure 1-6: Example of discrete pulse time series because of the arrivals of 

quantized charge. Each pulse represents a carrier arrival with charge 𝑞, in other 

word each pulse is a 𝛿 function with integral equals  𝑞. 

Here I briefly introduce the way to derive the shot noise formula based on the 

assumption above. Let 𝑥(𝑡) be the time series formed by the random pulses, and note that 

𝑥(𝑡) is composed with many 𝛿 functions. If we suppose there 𝑁 pulses detected from 

time 𝑡 = 0 to 𝑡 = 𝑇 distributed at 𝑡 = 𝑡1, 𝑡2, 𝑡3, … . 𝑡𝑁. Then 𝑥(𝑡) during time 𝑇 can be 

expressed as: 

 
𝑥(𝑡) = ∑𝑞𝛿(𝑡 − 𝑡𝑖)

𝑁

𝑖=1

 
1-7 

 

The autocorrelation function of this time series can be expressed as 
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𝑅(𝜏) =

1
𝑇

∫ 𝑥(𝑡)𝑥(𝑡 − 𝜏)𝑑𝑡
𝑇

0
=

𝑞2

𝑇
∑∑∫ 𝛿(𝑡 − 𝑡𝑖)𝛿(𝑡 − 𝜏 − 𝑡𝑗)𝑑𝑡

𝑇

0

𝑁

𝑗=1

𝑁

𝑖=1

 
1-8 

 

 The independent random arrival property decides that the autocorrelation function 

𝑅(𝜏 ≠ 0) = 0 (this also can be obtained from more detailed calculation). When 𝜏 = 0, 

equation above becomes: 

 
𝑅(0) =

𝑞2

𝑇
∑∑∫ 𝛿(𝑡 − 𝑡𝑖)𝛿(𝑡 − 𝑡𝑗)𝑑𝑡

𝑇

0

𝑁

𝑗=1

𝑁

𝑖=1

=
𝑞2𝑁
𝑇

𝛿(0) 
1-9 

 

Therefore 𝑅(𝜏) = 𝑞2𝑁
𝑇

𝛿(𝜏). The spectrum in the frequency domain can be 

obtained from Fourier transform: 

 
𝑠(𝑓) = ∫ 𝑅(𝜏)𝑒−𝑖2𝜋𝑓𝜏𝑑𝜏

+∞

−∞
=

𝑞2𝑁
𝑇

∫ 𝛿(𝜏)𝑒−𝑖2𝜋𝑓𝜏𝑑𝜏
+∞

−∞
=

𝑞2𝑁
𝑇

 
1-10 

 

 𝑞𝑁 is the total charge passed during time interval 𝑇, so the current 𝐼 = 𝑞𝑁/𝑇. 

Then we get 𝑆(𝑓) = 𝑞𝐼. Considering 𝑆(−𝑓) = 𝑆(𝑓) and in the real world we actually 

measure the summation of positive frequency and negative frequency, we finally got the 

shot noise formula 𝑆(𝑓) = 2𝑞𝐼, when the charge carrier is electron, 𝑆(𝑓) = 2𝑒𝐼, and this 

is the most common form of the classic shot noise formula. 

 To observe shot noise, special systems are required. The shot noise discovered by 

Walter Schottky in 1918 is classical shot noise and can be fully explained by the 
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statistical method above. Recent research of shot noise found in mesoscopic conductors, 

like tunnel junctions, quantum point contacts and so on, originate from scattering of 

electrons, and detailed derivations can be found in [37,42,43]. Here I summarize the final 

results for shot noise formulas, in a two terminal tunneling conductor(see diagram in 

Figure 1-7) with resistance 𝑅, assuming ideal one dimension tunneling model: 

 𝑆𝐼 =
2
𝑅

∫[𝑓𝑟(𝐸)(1 − 𝑓𝑙(𝐸)) + 𝑓𝑙(𝐸)(1 − 𝑓𝑟(𝐸))] 𝑑𝐸 = 2𝑒𝐼𝑐𝑜𝑡ℎ (
𝑒𝑉

2𝑘𝐵𝑇
) 1-11 

 

 Here 𝑓𝑟(𝐸) and 𝑓𝑙(𝐸) represent the Fermi-Dirac distribution in the left and right 

electrodes, 𝑓𝑟(𝐸)(1 − 𝑓𝑙(𝐸)) stands for the tunneling from right side to left side and 

𝑓𝑙(𝐸)(1 − 𝑓𝑟(𝐸))  is the tunneling from left to right, 𝑘𝐵  is Boltzmann constant, 𝑇  is 

temperature, 𝐼 is current and 𝑒 is the electron charge. Looking at the formula above, we 

can find two interesting properties, first, as 𝑉 → 0, 2𝑒𝐼𝑐𝑜𝑡ℎ ( 𝑒𝑉
2𝑘𝐵𝑇

) → 4𝑘𝐵𝑇𝐼
𝑉

= 4𝑘𝐵𝑇𝐺 , 

which means the noise signal in the low bias limit is actually the thermal noise where 𝐺 is 

the conductance, and this is consistent with the fact that shot noise need driving current ; 

second, when 𝑒𝑉
2𝑘𝐵𝑇

≫ 1, 𝑐𝑜𝑡ℎ ( 𝑒𝑉
2𝑘𝐵𝑇

) → 1 , and 2𝑒𝐼𝑐𝑜𝑡ℎ ( 𝑒𝑉
2𝑘𝐵𝑇

) → 2𝑒𝐼 , it becomes the 

classic shot noise and only related to the current and charge carrier.  The formula above 

assumes that the tunneling probability in all channels are close to zero, if it is not, the 

shot noise formula at finite bias and temperature would be [37,42] 

 
𝑆𝐼 = 𝐹 (2𝑒𝐼𝑐𝑜𝑡ℎ (

𝑒𝑉
2𝑘𝐵𝑇 

) − 4𝑘𝐵𝑇𝐺) + 4𝑘𝐵𝑇𝐺 
1-12 
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where 𝐹  is called Fano Factor. 𝐹  is related to device geometry, material properties, 

effective charge and so on. In the two terminal tunneling model above, the Fano factor 𝐹 

is decided by the transmission probability 𝑇𝑛  of all channels as 𝐹 = ∑ 𝑇𝑛(1−𝑇𝑛)𝑛
∑ 𝑇𝑛𝑛

, when 

𝑇𝑛 → 0 , 𝐹 = ∑ 𝑇𝑛(1−𝑇𝑛)𝑛
∑ 𝑇𝑛𝑛

≈ 1 . When 𝑇𝑛 → 1 , 𝐹 = ∑ 𝑇𝑛(1−𝑇𝑛)𝑛
∑ 𝑇𝑛𝑛

≈ 0 . An diagram of shot 

noise with Fano factor 𝐹 equals 1 is shown below [44]:  

 

Figure 1-7 [44]. Expected shot noise of a tunnel junction as a function of bias voltage 

at finite temperature. Inserted black/gray diagram on right sides represent the 

Fermi Dirac distribution at nonzero and zero bias on two sides of tunnel junction. 

The shot noise at zero bias equals thermal noise, and the system need to be driven 

out of equilibrium (𝑒𝑉 ≫ 𝑘𝐵𝑇) to obeserve shot noise. 

Although sometimes shot noise also causes an undesired decrease of the signal to 

noise ratio like thermal noise and 1/𝑓 noise, shot noise at the same time provides extra 

information that is challenging to obtain from usual transport measurement [37,42,44,45]. 

One of the most famous applications of shot noise is to study the effective charge of 
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current-carrying excitations [45–56], and these works were done in different systems like 

fractional quantum Hall devices [49,53–56], Josephson junctions [50], 

superconductors [45,51,52]. The structure of the devices also varies from planal tunnel 

junction [45], to scanning tunnel microscope(STM) junctions [52], to quantum point 

contacts [57], and to edge channels [49]. The earliest theoretical prediction of fractional 

charged carriers is proposed by Laughlin [58,59], in order to explain the fractional 

quantum Hall effect [60] which was observed in two-dimensional electron gas subjected 

to strong perpendicular magnetic field. The theoretical works that use shot noise to study 

fractional charge were authored by C.L. Kane in 1994 [46] and P. Fendley in 1995 [61]. 

The first experiments that directly observe of effective charge 𝑒∗ = 𝑒
3
 were done by R. de-

Picciotto in 1997 [53], and almost simultaneously by L. Saminndayar [54]. Here I 

introduce R. de-Picciotto’s work to show how shot noise decides the effective charge.  

The authors measured back scattered current noise from a quantum point contact 

in two-dimensional electron gas (2DEG). The 2DEG is embedded in a GaAs-AlGaAs 

heterostructure, and the quantum point contact is formed by two metallic gates 

evaporated on the surface of the structure. The current quantum shot noise for a non-

interacting single one-dimensional channel is given by: 

 
𝑆𝐼 = 2𝑔0𝑡(1 − 𝑡) [𝑄𝑉𝑐𝑜𝑡ℎ (

𝑄𝑉
2𝑘𝐵𝑇

) − 2𝑘𝐵𝑇] + 4𝑘𝐵𝑇𝑔0𝑡 
1-13 

 

Where 𝑔0 = 𝑒2/ℎ, 𝑄  is effective charge, 𝑉  is applied voltage, 𝑇 is temperature 

and 𝑡 is transmission probability. The key finding is shown in the Figure 1-8 [53] below. 
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The measured quantum shot noise value is much smaller than classic shot noise and very 

close to shot noise with F = 1/3 and hence effective charge equals 𝑒/3. This experiment 

unambiguously supports the existence of fractional charge in the fractional quantum Hall 

system. 

 

Figure 1-8 [53]. Quantum shot noise as a function of backscattered current 𝐼𝐵 in the 

fractional quantum Hall regime at 𝑣=1/3, for two different transmission coefficients 

𝑡. Solid and dashed lines are plots using formula above corresponding to different 

effective charge. 
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1.4. Shot noise in nanowires 

Here I introduce shot noise in nanowires since this is directly related to my work. 

People have done detailed research in Fermi gas and Fermi liquid nanowires in both 

theory and experiment sides. Here I first show the theoretical conclusions of the relation 

between Fano factor and length of the wire. We start with Fermi gas expectations. 

 

Figure 1-9 [62]. Theoretical predictions of current noise intensity 𝑆𝐼/2𝑒𝐼 versus 

nanowire length 𝐿 when 𝑒𝑉 ≫ 𝑘𝐵𝑇. 

In the diagram above, we can see four different expected F values as nanowire 

length changes. Let’s first look at the first range where 𝐿 < 𝑙, 𝑙 is the electron elastic 

mean free path(around 100 nm in this figure). When the nanowire device length is much 

shorter than the elastic mean free path, the electrons transport from one contact to another 

is ballistic, and the shot noise would vanish, and this is equivalent to transmission 
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coefficient 𝑡~1 in Equation 1-13. In the second range 𝑙 ≪ 𝐿 ≪ 𝐿𝜑, Fano factor equals to 

1/3  [63,64], where 𝐿𝜑  is the electron phase breaking length. In other word, when 

nanowire device length 𝐿 ≪ 𝐿𝜑, electron transport from one contact to another remains 

phase coherent, which is necessary for one of theoretical works which predict Fano factor 

F = 1/3 shot noise in diffusive nanowire as we will see later. In the third range 𝐿𝜑 ≪ 𝐿 ≪

𝐿𝑒−𝑝ℎ , Fano factor is predicted to be √3/4 , where 𝐿𝑒−𝑝ℎ  is the electron-phonon 

scattering length. In this range, the electrons undergo electron-electron inelastic scattering 

and thermalize their energy via the electron-electron interaction. The electronic thermal 

conductor along the wire transfer the energy to two contacts where thermal conductivity 

is decided by the Wiedemann-Franz law, and the result is a local temperature profile 

𝑇𝑒(𝑥) along the nanowire. The direct calculation of Johnson noise based on  𝑇𝑒(𝑥) gives 

𝑆𝐼 = 2𝑘𝐵𝑇/𝑅[1 + (𝑣 + 1/𝑣) tan−1 𝑣] , where 𝑣 = √3𝑒𝑉/2𝜋𝑘𝐵𝑇 . For 𝑒𝑉 ≫ 𝑘𝐵𝑇 , 𝑆𝐼 =

(√4/3)2𝑒𝐼  [62,65,66]. Since the shot noise signal in this range comes from increased 

temperature of electrons, this is also called hot electron noise. In the fourth range 𝐿 ≫

𝐿𝑒−𝑝ℎ, the nanowire is long enough so that the heat generated in wire is directly removed 

by phonons as well as transfer to the two contacts following the Wiedemann-Franz law. 

The Fano factor decreases to zero as nanowire length increases sufficiently [67]. It is 

worth pointing out that part of description in some references has been revised. For 

example in Andrew H. Steinbach 1996 [62],  the claims in fourth range where 𝐿 ≫ 𝐿𝑒−𝑝ℎ 

that the noise is 𝑆𝐼 = 4𝑘𝐵𝑇/𝑅, independent of 𝐼, and thus the nanowire displays no shot 

noise as commonly expected, but this was corrected later by M. Henny’s work in 

1997 [68] showing that when 𝐿 ≫ 𝐿𝑒−𝑝ℎ , the electron temperature 𝑇𝑒  and phonon 
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temperature 𝑇𝑝ℎ are not exactly same, and 𝑇𝑒 ∝ 𝐼2/5 when 𝑇𝑒 ≫ 𝑇𝑝ℎ, and 𝑇𝑒 is related to 

electron-phonon coupling parameter which can be obtained from additional noise 

measurement. To help the reader understand the shot noise in nanowires better, I will 

spend several paragraphs discussing the theory and experimental results for th second 

(𝐹 = 1/3), third (𝐹 = √3/4) and fourth (𝐹 → 0) length. 

 

1.4.1. F = 1/3 shot noise in nanowire 

The prediction of F = 1/3 shot noise in diffusive metal nanowire is ubiquitous, and 

there are actually two main theories that reached same conclusion. The first is proposed 

by Beenakker and Buttiker in 1992 [64]. In their theoretical paper, they claim shot noise 

in a disordered phase-coherent conductor, much longer than the mean free path, but much 

shorter than an inelastic scattering length, is one third of the classic value of  a Poisson 

process, and this reduction is caused by noiseless open quantum channels. Start from the 

Landauer-Buttiker approach to conductor for a phase-coherent regime  [69]: 

 
𝑆 = 2𝑒𝑉

𝑒2

ℎ
Tr 𝒕𝒕†(1 − 𝒕𝒕†) = 2𝑒𝑉

𝑒2

ℎ
∑𝑇𝑛(1 − 𝑇𝑛) 

1-14 

 

Here 𝒕𝒕† is N by N transmission matrix and 𝑇𝑛 are eigenvalues of transmission 

matrix. They consider the case that device length 𝐿 is much longer than mean free path 𝑙 

but much smaller than localization length 𝑁𝑙 . Their calculation applies a result from 

random matrix theory of quantum transport, and use the concept of channel dependent 
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localization length 𝜁𝑛  related to the transmission eigenvalues by 𝑇𝑛 = cosh−2(𝐿/𝜁𝑛) . 

Under assumption that the inverse localization length is uniformly distributed between 0 

and 1/𝜁𝑚𝑖𝑛, for arbitrary function 𝑓(𝑇) that vanishes for 𝑇 ≪ 1, we have: 

 < ∑ 𝑓(𝑇𝑛)𝑁
𝑛=1 >

< ∑ 𝑇𝑛
𝑁
𝑛=1 >

= ∫ 𝑓(cosh−2 𝑥)𝑑𝑥
∞

0
 

1-15 

 

Where < > represent expected values. With eh equation above, one can evaluate 

the ratio of different order transmission matrix trace values as 𝐶𝑝 = <Tr(𝒕𝒕†)
𝑝
>

<Tr 𝒕𝒕†>
, 𝑝 = 1,2, … 

Using 𝑓(𝑇) = 𝑇2 for the equation above, we find 𝐶2 =
Γ(12)Γ(2)

2Γ(2+1
2)

= 2
3
. This implies that: 

 
< 𝑆 > = 2𝑒𝑉

𝑒2

ℎ
< 𝑇𝑟 𝒕𝒕† > (1 −

2
3
) =

2
3
𝑒𝑉 < 𝐺 > 

1-16 

 

This equation means that the Fano factor is 1/3. The author claims that the 

reduction of shot noise in a diffusive wire is the result of quantum interference. It comes 

from the bimodal distribution of transmission eigenvalues, such that a fraction of 𝑙/𝐿 of 

eigenvalues is close to 1 and the remainder are exponentially small, close to 0. 

Another theory that gives Fano factor 1/3 is proposed by Nagaev also in 1992 [63]. 

Unlike Beenakker and Buttiker’s method, which requires phase coherent transport and 

quantum interference, Nagaev’s theory is semiclassical and does not require phase 

coherent transport. Nagaev’s theory starts from a kinetic equation for the electron 
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occupation probability 𝑓(𝐸, 𝑥) , and current noise 𝑆𝐼  is derived showing that it is 

proportional to the fluctuations of occupation number 𝑓(1 − 𝑓) that: 

 
𝑆𝐼 = 4𝐺 〈∫ 𝑓(𝐸, 𝑥)[1 − 𝑓(𝐸, 𝑥)]𝑑𝐸

∞

−∞
〉 

1-17 

 

where 𝐺  is conductance and 𝑥  is the position along the wire. According to Nagaev’s 

theory, one can introduce the contribution of the electron-electron scattering integral 𝐼𝑒𝑒 

and the electron-phonon scattering integral 𝐼𝑝ℎ into the diffusion equation: 

 
𝐷

𝑑2

𝑑𝑥2 𝑓(𝐸, 𝑥) + 𝐼𝑒𝑒(𝐸, 𝑥) + 𝐼𝑝ℎ(𝐸, 𝑥) = 0 
1-18 

 

Hhere 𝐷  is the electron diffusion coefficient [66]. In the range 𝑙 ≪ 𝐿 ≪ 𝐿𝑒𝑒 , 

where 𝐿𝑒𝑒  is electron-electron scattering length, 𝐼𝑒𝑒(𝐸, 𝑥) ≈ 𝐼𝑝ℎ(𝐸, 𝑥) ≈ 0, then we get 

𝑑2

𝑑𝑥2 𝑓(𝐸, 𝑥) = 0, or 𝑑
𝑑𝑥

𝑓(𝐸, 𝑥) equals a constant value. So for same energy 𝐸 , 𝑓(𝐸, 𝑥) 

linearly increases/decreases from one end of wire to the other end. To solve the diffusion 

equation, we also need two boundary conditions. Assuming two ideal contacts at the two 

ends, 𝑓(𝐸, 𝑥)  is given by Fermi-Dirac distributions by 𝑓(𝐸, 0) = 1/[exp ( 𝐸
𝑘𝐵𝑇

) + 1] at 

left end and 𝑓(𝐸, 𝐿) = 1/[exp (𝐸−𝑒𝑉
𝑘𝐵𝑇

) + 1] at right end. Then we can solve 𝑓(𝐸, 𝑥) easily: 

 
𝑓(𝐸, 𝑥) =

𝐿 − 𝑥
𝐿

𝑓(𝐸, 0) +
𝑥
𝐿
𝑓(𝐸, 𝐿) 

1-19 
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Putting 𝑓(𝐸, 𝑥) into the noise integration equation, one obtains: 

 
𝑆𝐼 =

2
3
[
4𝑘𝐵𝑇

𝑅
+

𝑒𝑉
𝑅

coth (
𝑒𝑉

2𝑘𝐵𝑇
)] 

1-20 

 

The equation above is the quantum shot noise with Fano factor equals 1/3. Based 

on these theoretical predictions, there were several experimental results published in the 

following years. The first work about the 1/3 shot noise in nanowire is reported in 1994 

done by F. Liefrink et al [70]. The experiment was in a two-dimensional electron gas 

system, and the nanowire is formed by applying a gate voltage on two sides of a split-safe 

structure. By changing the gate voltage, the authors can adjust the electron density, 

nanowire width, mean free path and inelastic scattering length. The result is shown in 

Figure 1-10 below: 

 

Figure 1-10 [70]. Fano factors dependence on gate voltage at 𝑇 = 4.2K. Dashed line 

indicates the expected value from theory. 
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The results vary from 0.2 to 0.45 in this experiment, not far from 1/3. It is worth 

pointing out that the authors claim that the wire length is longer than electron coherence 

length in the device, so coherent transport maybe is not necessary for this reduced shot 

noise. Two years later, R.J Schoelkopf et al measured shot noise in a nanowire at very 

high frequency(1-20 GHz), and differential noise 𝑑𝑆𝐼/𝑑𝐼 is close to 2/3𝑒, but the total 

shot noise curve is not shown [71]. In 1998, M. Henny et al did very careful analysis of 

experimental design and considered the effects of the contact reservoirs. By making the 

two reservoirs more closer to ideal heat sinks, he fabricated nanowire devices with better 

well-defined Fermi-Dirac distributions at the two ends, and observed 1/3 shot noise at 

last [72]. The main result is shown in Figure 1-11 below: 

 

Figure 1-11 [72]. Shot noise measurements of three different samples with different 

𝑅/𝑅∎ ratio at 𝑇=0.3K, where 𝑅 is the resistance of wire and 𝑅∎ is the resistance of 

contact reservoirs. The upper and lower line corresponds to predictions of 𝐿 ≫ 𝐿𝑒𝑒 

(𝐹 = √3/4) and  𝐿 ≪ 𝐿𝑒𝑒 (𝐹 = 1/3) respectively. The result shows that the 

reservoirs are significantly heated when the 𝑅/𝑅∎ ratio is not large enough. 



 44 
 

1.4.2. F = √𝟑/4 shot noise in nanowire 

In the previous subsection, I introduce the case where 𝑙 ≪ 𝐿 ≪ 𝐿𝑒𝑒, here I focus 

on the situation when 𝐿𝑒𝑒 ≪ 𝐿 ≪ 𝐿𝑒−𝑝ℎ. There were two theoretical works published in 

1995 by Kozub [65] and Nagaev [66]. Both papers concluded that 𝑆𝐼 = √3
2

𝑒𝑉
𝑅
 when 𝑒𝑉 ≫

𝑘𝐵𝑇, and the derivations are similar. When 𝐿𝑒𝑒 ≪ 𝐿, the electron-electron scattering is 

strong that carriers exchange energy effectively with each other, and reach 

thermodynamic equilibrium locally; therefore, the occupation probability 𝑓(𝐸, 𝑥) can be 

described by a local Fermi-Dirac distribution with a local temperature 𝑇𝑒(𝑥) higher than 

the phonon temperature and a local chemical potential 𝜇(𝑥) = (𝑥/𝐿)𝑒𝑉 as: 

 
𝑓(𝐸, 𝑥) =

1
𝑒[𝐸−𝜇(𝑥)]/𝑘𝐵𝑇𝑒(𝑥) + 1

 
1-21 

 

Now we can compare the electron distribution function between 𝐿 ≪ 𝐿𝑒𝑒 case and 

𝐿 ≫ 𝐿𝑒𝑒 case based on Nagaev’s theory. The result is shown in Figure 1-12 
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Figure 1-12 [72]. Electron distribution of a nanowire connected to two large 

reservoirs. The distributions at the two ends are Fermi-Dirac distributions with a 

chemical potential difference eV. When  𝐿 ≪ 𝐿𝑒𝑒, electron distribution inside the 

wire is a linear combination of the two distributions at the two ends, so it forms a 

two-step function. If we look at the position exactly in the middle, the step is at 0.5, 

and the step will move up/down as the position moves to right/left. When 𝐿 ≫ 𝐿𝑒𝑒, 

the distribution is Fermi-Dirac everywhere, but the local temperature is higher in 

the middle, so the Fermi-Dirac distribution is less sharp. 

Recall the Nagaev’s diffusion function in last subsection, we ignore phonon 

effects and only consider the electron-electron scattering integral 𝐼𝑒𝑒. 

 
𝐼𝑒𝑒(𝜖) = −

𝜋2

64
𝜖𝐹

−1 𝑘
𝑝𝐹

∫ 𝑑𝜖′
∞

−∞
∫ 𝑑𝜔{𝑓(𝜖)𝑓(𝜖′ − 𝜔)[1 − 𝑓(𝜖 − 𝜔)][1

∞

−∞

− 𝑓(𝜖′)] − 𝑓(𝜖 − 𝜔)𝑓(𝜖′)[1 − 𝑓(𝜖)][1 − 𝑓(𝜖′ − 𝜔)]} 
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Using the Fermi-Dirac distributions for the density functions above, the diffusion 

function becomes: 

 𝑑2𝑇𝑒
2

𝑑𝑥2 = −
6
𝜋2 (

𝑒𝑉
𝑘𝐵𝐿

)
2
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The same conclusion would be obtained if we use local Joule heating and the 

Wiedemann-Franz law to construct the temperature profile 𝑇𝑒(𝑥). To easily understand 
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this, the equation above can be rewritten as 𝐿0
2

𝑑2𝑇𝑒
2

𝑑𝑥2 = −(𝑉
𝐿
)
2
, where 𝐿0 = 𝜋2

3
𝑘𝐵

2

𝑒2 is the 

Lorenz number. Then it is easy to see that the left side is heat a diffusion equation 

decided by the electron thermal conductivity and right side is Joule heating. 

Solving the equation above yields a temperature profile: 

 
𝑇𝑒(𝑥) = √𝑇2 +

𝑥
𝐿
(1 −

𝑥
𝐿
)
𝑉2

𝐿0
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The integral of J-N noise along the wire gives 𝑆𝐼 = 2𝑘𝐵𝑇/𝑅[1 + (𝑣 +

1/𝑣) tan−1 𝑣], where 𝑣 = √3𝑒𝑉/2𝜋𝑘𝐵𝑇. For 𝑒𝑉 ≫ 𝑘𝐵𝑇, 𝑆𝐼 = (√4/3)2𝑒𝐼. 

The first experimental work that focuses on the electron heating effects by was 

done Steinbach et al [62] in next year(1996) after the theoretical results. They measured 

noise signals in different lengths (1μm to 7mm) of silver thin film resistors at low 

temperature, and part of the results are shown below: 
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Figure 1-13 [62]. Noise signal dependence on current I for a 30 μm long device at 50, 

100, and 200 mK. Solid and dashed lines represent theoretical predictions of strong 

electron-electron interaction(50, 100 and 200 mK) and independent electron(50 

mK) cases respectively. The experiment data show great agreement with interacting 

electron theory. 

 

1.4.3. Phonon effects on shot noise in nanowires 

In this subsection, I briefly discuss the phonon influence on the shot noise signal. 

Phonons are the vibration modes of the sample and do not produce the electrical noise 

signal directly. Phonons affect the conductivity and noise through scattering with 

conductor electrons. In term of noise signal, phonons can have two effects: 1. Produce 

1/𝑓 noise in low frequency [73]. 2.Supress the noise signal by absorbing energy from hot 

electrons. In this thesis, we focus on second effect. The initial theoretical work was 

developed by Nagaev in 1995 [66], where he covers both the effect of electron-electron 

scattering and electron-phonon scattering. Here I jump to the final diffusion function 

including the phonon effects: 

 𝐿0

2
𝑑2𝑇𝑒

2

𝑑𝑥2 = −(
𝑉
𝐿
)
2

+ Γ (
𝑘𝐵

𝑒
)
2

(𝑇𝑒
5 − 𝑇5) 
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Here 𝐿0 = 𝜋2

3
𝑘𝐵

2

𝑒2 is the Lorenz number, and Γ is a phenomenological electron-

phonon scattering strength parameter. The item on the left is heat diffusion decided by 

the Wiedemann-Franz law, the first item on the right is related to Joule heating, and the 

last item accounts for energy transfer from hot electrons to phonons. When 𝐿 ≫ 𝐿𝑒−𝑝ℎ, 

the heat transfer along the wire to the two reservoirs can be ignored, the temperature 

profile would be dominated by electron-phonon scattering. The local electron 

temperature becomes almost constant along the wire and: 

 

𝑇𝑒 = (𝑇𝑒−𝑝ℎ
5 +

1
Γ
(
𝑒𝑉
𝑘𝐵𝐿

)
2

)

1
5
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And the noise intensity is given by: 

 

𝑆𝐼 =
4𝑘𝐵

𝑅
(𝑇𝑒−𝑝ℎ

5 +
1
Γ
(

𝑒𝑉
𝑘𝐵𝐿

)
2

)

1
5
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Steinbach et al’s work in 1996 [62] shows data consistent with the equation 

above, and Henny et al did more detailed work in 1997 [68]. Here I show part of Henny’s 

results below in Figure 1-14. It is worth noting that when the wire is 50 𝜇𝑚 long, the 

temperature for the most of the wire is constant and the profile 𝑇𝑒(𝑥) is flat. The electron-

phonon scattering strength parameter can be estimated using the noise measurement as a 

function of bias. Henny got Γ ≈ 5 × 109 K−3m−2 for his gold nanowires. 
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Figure 1-14 [68]. Noise intensity versus electric field along the wire for three 

different length sample. Sample A is a 50 𝜇𝑚 long Au wire, sample B has five 10 𝜇𝑚 

long wires in series, and sample C is made with 30 wires with a length if 0.84 𝜇𝑚. 

The inset shows the calculated temperature profile along the wire for the three 

samples. 

Equation 1-25 will be discussed more in details in Chapter 6, and we add one item 

to correct the thermal conductivity change when the resistance varies with temperature. It 

is worth noting that the original theory description for shot noise in diffusive wire was 

based effectively on a Fermi gas. It was believed to extend to more correlated Fermi 

liquid with interaction corrections [74], but a full treatment has only very recently been 

done by our collaborators Yiming Wang et al [75]. Yiming Wang et al have examined the 

Fermi liquid case with strongly renormalized but not zero quasiparticles weight 𝑍. They 
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find that 𝐹 → √3/4 for this case, as all Landau parameters cancel and 𝑍 never appear in 

the noise calculation.  
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Chapter 2 

Mott insulators 

2.1. Mott insulators 

In 1937, researchers, such as de Boer and Verwey, found that some metal oxides 

which are supposed to be metallic based on the band theory are actually 

insulators [76,77]. For example, NiO, which should be a metal because of a partially 

filled d-band according to band theory, actually turns into an insulator as temperature 

goes down. Sir Neville Mott among others considered the problem of how electron-

electron interactions could lead to insulating properties in systems where simple electron 

counting would suggest a metallic state (electronic chemical potential in the middle of a 

band). Still taking NiO as an example, Mott modeled that electric conduction comes from 

the hopping of electrons from one site to another. When an electron is about to hop to a 

new site which is already occupied by an electron, it will be pushed back by the “on-site” 

Coulomb repulsion energy U. If the repulsion energy U is greater than the electron’s 
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kinetic energy 𝑡, the electron would not be able to hop to another site and would become 

localized in its original site, so the system will behave like an insulator.  

In 1963 [78], Hubbard first proposed a simple model considering the Coulomb 

repulsion and hopping matrix element in a 1-D long chain. The Hamiltonian can be 

expressed as 

 
𝐻 = − ∑ 𝑡𝑖𝑗(𝑐𝑗𝜎+ 𝑐𝑘𝜎 + 𝑐𝑗𝜎𝑐𝑘𝜎

+ )
𝑁

𝑖,𝑗,𝜎

+ ∑𝑈𝑖𝑛𝑖𝜎𝑛𝑖,−𝜎

𝑁

𝑖

 
2-1 

  

Where 𝐻 is Hamiltonian, 𝑡𝑖𝑗  is hopping matrix element, 𝑐𝑗𝜎+  is the creation operator of 

one electron in site 𝑗 with spin 𝜎, 𝑐𝑗𝜎 is the annihilation operator of one electron in site 𝑗 

with spin 𝜎, 𝑈𝑖 is Coulomb repulsion energy and 𝑛𝑖𝜎 = 𝑐𝑗𝜎+ 𝑐𝑗𝜎 is the number operator on 

electron at site 𝑗. Figure 2.1 shows the diagram shows the 1-D chain diagram. 
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Figure 2-1: Diagram of electron hopping and repulsion from electron Coulomb 

interaction. When the electron kinetic energy is smaller than on-site repulsion 

energy, the electron will be localized. 

 

When the Coulomb repulsion energy is much larger than electron hopping matrix 

element, the electron interaction will effectively split the original half-filled band into 

two bands. One is called upper Hubbard band and the other is called lower Hubbard 

band. The typical Mott-insulator Hubbard band structure is show in Figure 2.2. The left 

side is the band structure of a metal phase, where the d-band is half-filled, and there is 

energy gap ∆= |εd − εp| between d-band and p-band. When the system goes through the 

Mott metal-insulator phase transition, the d-band is split into two bands and separated by 

a charge gap because of the electron-electron repulsion energy U. 
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Figure 2-2 [79]: Typical Mott-insulator band structure.  As electron-electron on-site 

interactions are “turned on”, the system goes through a metal-insulator phase transition; 

the d-band is split into two bands separated by a charge gap because of the electron-

electron repulsion energy U. 

From the band structure shown above, we could find two ways to tune the metal-

insulator transition. The first one is to increase the bandwidth of electron band. When the 

bandwidth is larger than the charge gap caused by electron interactions, the lower 

Hubbard band and upper Hubbard will overlap and form a single band with the Fermi 

energy lying in the middle, and the system will become metallic. One of the methods to 

increase the bandwidth is to increase the overlap of electron wave functions by 

compressing the material. The second method is to dope electrons (or holes). Doping can 

change the positon of Fermi surface, and if it moves from at the middle of upper Hubbard 

band and lower Hubbard band shown in the Figure 2.2, the resulting partial-filled upper 

band (electron doping) or lower band (hold doping) will turn the system into metallic 

state. 

2.2. V2O3 phase transition 

Metal-insulator transitions in metal oxides remain at the core of physics and draw 

much attention in past decades [80–84]. The emerging technologies such memories and 

neuromorphic computing [85] rely on the understanding of the fundamental mechanism 

of this phase transition. Vanadium sesquioxide (V2O3), as an archetypal material with 

strong electronic correlations, undergoes a rhombohedral paramagnetic metal to 
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monoclinic antiferromagnetic insulator transition [86] when cooled below 160 K, with 

films showing a range of phase coexistence of ~30 K [87]. The resistance can increase by 

several orders of magnitude with cooling as antiferromagnetic insulating domains grow at 

the expense of paramagnetic metallic domains.  The metal-insulator transition may be 

triggered by several stimuli: temperature [88], light [89,90], strain [91], pressure [91], 

and electric field [92].   Increased interest in such metal-insulator materials for 

neuromorphic computing [85] applications has emphasized the importance of 

understanding fluctuations in the transition both in and out of equilibrium. The structures 

of these two phases are shown in Figure 2.3. Each corner represents a vanadium atom, 

other vanadium and oxygen inside are omitted for clarity. 

 

Figure 2-3 [93]: The monoclinic insulating and rhombohedral metallic structures of 

V2O3.  
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2.3. Percolation theory 

Percolation theory is actually based on statistics and probability theory. It studies 

a network formed from a collection of points distributed in a space, where the points are 

randomly linked to each other, or the points’ positions are randomly located, to form 

different linked clusters. The situation of points with fixed positions and random linkages 

is called “bond percolation”; the other situation where the points are randomly positioned 

and the linkage between each points follow a certain rule is called “site percolation”. One 

of the earliest percolation problems was raised by Broadbent and Hammersley [94] who 

consider random linkage edges between vertices, where any pairs of vertices are linked 

with probability 𝑝.  

When considering the size of a cluster in a percolation model, there is usually a 

percolation critical point (or percolation threshold).  When the system goes beyond this 

critical point as a function of some control parameter (such as p), there is likely some 

giant cluster that spans the system; otherwise, it is statistically unlikely for the system to 

have a large cluster. The critical value of p required for percolation is dependent on the 

details of the model. For example, take the vertical percolation in a 2-D square lattice as 

an example. If each square has probability 𝑝 to be a conductor, and probability 1 − 𝑝 to 

be an insulator, when the 𝑝 > 𝑝𝑐 ≈ 0.529 , it is very probable (essentially certain as 

system size becomes large) to find a conductive path from one side of the lattice to the 

other.  On the other hand, if 𝑝 < 𝑝𝑐, it is very unlikely (essentially no chance as system 

size becomes large) to find a conductive path from one side of the lattice to the other. So, 

when 𝑝 > 𝑝𝑐 the system is metal, and when 𝑝 < 𝑝𝑐 , the system is insulator. 
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Unfortunately, there is still no exact analytical answer for this threshold, and this number 

is obtained by Monte Carlo simulation. 

Percolation models are important in the real physics systems. For example, in 

2015 [95], researchers studied the noise signal in VO2 across its metal-insulator phase 

transition. In the coexistence regime of that phase transition, as in V2O3, the material 

breaks up into metallic and insulating domains. The metal-insulator transition can be 

regarded as proceeding through the change of fraction of each domain. So the resistance 

changes in a similar way to that mentioned above. Although the system is not a simple 

percolation model because the metal (insulator) domain tends to grow along the 

crystallographic c-axes, people still observed the percolative character in metal-insulator 

transition of VO2. In classical lattice-percolation with a periodic lattice, when the system 

is sufficiently close to the percolation threshold, researchers claim there is scaling [96–

98] 

 𝑆𝑅

𝑅2 ∝ 𝑅𝑥 
2-2 

Where 𝑆𝑅
𝑅2 is normalized noise intensity, and 𝑥 is noise scaling exponent related to 

the details of percolation model. People in VO2 found this scaling effect (Figure 2.4) with 

𝑥 ≈ 2.6, and it is explained by Pennetta–Trefan–Reggiani theory [99], which considers 

randomly switching defects in the lattice. Supposing a given lattice site has a failure 

probability to malfunction and becomes a defect and a healing probability for the defect 

to recover its original lattice resistance. 
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Figure 2-4 [95]: Normalized noise intensity versus sample resistance in log-log 

scale. It shows percolation noise scaling exponent around 2.6 at two side of 

threshold. 

In scaling models of percolation, the resistance noise not only may come from the 

fluctuation of resistance of each region, but also may come from the fluctuation of 

volume of each fraction. In 1993, L.B. Kiss and P. Svedlindh [100] created a model to 

explain why the noise scaling factor in high temperature superconductor film is close to 

1.5 rather than the predicted 1.3 by the classic percolation model. In this model, the noise 

results from fluctuations that switch off or on connections between conducting regions 

rather than changes in the resistance of the conducting regions themselves. The value of 
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noise scaling factor is related to the resistance scaling factor 𝑠 by 𝑥 = 2/𝑠. The relation 

can be expressed as [100] 

 
𝑅 ∝ (𝑝 − 𝑝𝑐)𝑠,

𝑆𝑅

𝑅2 ∝ 𝑅𝑥,      𝑥 = 2/𝑠  2-3 

 

where 𝑝 is the fraction of insulating part and 𝑝𝑐 is the threshold. The noise in this model 

comes from the random switching of the metal state and insulator state of each region, 

and people call this type noise “p-noise”. In this case, the noise scaling factor is related to 

the dimension of system. 𝑥 is predicted to be 2.7 for 3D, 1.5 for 2D and 2 for 1D. 
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Chapter 3 

Strange Metal 

Fermi liquid theory, also known as Landau’s Fermi liquid theory, was firstly 

introduced to explain the behavior of 3He in 1959 [101], and it was later used to explain 

the properties of normal metals with weak electron-electron interactions. It successfully 

explained important features of normal metals such as 𝑇2 dependence resistivity and 𝑇 

dependence specific heat at low temperature, and became the cornerstone in dealing with 

many body interactions for past 70 years. However, in past decades, more and more 

metallic systems were found that violate this paradigm. The most evident violation is the 

electric resistivity dependence on temperature. In normal metal, resistivity increases with 

increasing temperature but saturate at both low temperature and high temperature side. 

But in strange metal, there is no saturation at either low temperature side, or high 

temperature side, or both. In this Chapter, I would give brief introductions from Fermi 

gas to strange metal.   
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3.1. Fermi Gas 

Our basic understanding of electrons movement in metal starts from non-

interacting electrons.  In a metal with high density of free electrons, the screening 

effect [102] will be strong and screening length would be short, this means that the 

electrons feel less the Coulomb repulsion force from other electrons. This is true although 

it sounds counterintuitive.  

In a three dimensional lattice with periodic boundary condition, the solution of 

single electron Schrodinger equation yields the electrons wave functions for non-

interacting Fermi gas as: 

 
𝜓𝑘(𝑟) =

1
√𝑉

𝑒𝑖�⃑� ∙𝑟 , 𝑤ℎ𝑒𝑟𝑒 �⃑� =
2𝜋𝑛𝑥

𝐿𝑥
𝑥 +

2𝜋𝑛𝑦

𝐿𝑦
𝑦 +

2𝜋𝑛𝑧

𝐿𝑧
𝑧  

3-1 

Where 𝐿𝑥, 𝐿𝑦, and 𝐿𝑧 are size of lattice,  𝑉 is the volume of lattice, and 𝑥 , 𝑦 , and 

𝑧  are unit vectors in three directions. The energy of each eigenstate 𝜖𝑘 = ℏ2𝑘2

2𝑚
. In the low 

temperature limit, electrons tend to occupy the low energy eigenstates with small 𝑘 

values. Because of Pauli Exclusion principle, each eigenstate can have only two electrons 

with spin up and spin down. This results in a sphere in momentum space, where all states 

inside are occupied by electrons and all states outside are empty at zero temperature limit. 

This diagram is shown in Figure 3-1 [103] below. This sphere is called Fermi surface, the 

electron energy at the Fermi surface is called Fermi energy and the corresponding 𝑘 is 

called Fermi wavevector.  
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Figure 3-1 [103]. Ground state of three dimensional Fermi gas in momentum space. 

The low energy states (green circles) inside Fermi surface (purple sphere) are 

occupied by two spin electrons (up arrow and down arrow). One electron close to 

Fermi surface is excited and leaves a hole in original state. 

At finite temperature, the electrons close to Fermi surface can be thermally 

excited to higher energy states (outside of the Fermi surface), and form electron-hole 

pairs with the holes in their original positions. These excited electrons ideally have 

infinitely long lifetime if they do not scatter with other electrons, and their excitation 

spectra would be delta functions. Since electrons are fermions, they obey the statistical 

law of Fermi-Dirac distribution that gives the occupation function 𝑓 at given temperature 

𝑇 and chemical potential 𝜇 as:  
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𝑓(𝜖) =

1

𝑒
𝜖−𝜇
𝑘𝑇 + 1

 
3-2 

Using the Fermi-Dirac distribution, energy density of state (can be obtained from 

electron wave function), and necessary approximation, people can calculate the electrons’ 

total energy at low temperature limit and partial differential of total energy yield specific 

heat 𝐶𝑉 ∝ 𝑇. This prediction from Fermi gas theory works well with real metal. In 1936, 

Landau and Pomeranchuk [104] found that at sufficiently low temperature, the electron-

electron scattering can lead to  𝑇-square resistivity, and same theory result is proposed by 

Baber in 1937 [105]. These 𝑇-square resistivity and linear in 𝑇 specific heat 𝐶𝑉 extend to 

Fermi liquid as shown in section 3.2. Interestingly, the origin of 𝑇-square resistivity has 

recently been challenged by experiments in SrTiO3 [106] and  dilute metallic 

Bi2O2Se [107]. 

 

3.2. Fermi Liquid 

Fermi liquid has been regarded as the standard model in explaining metal 

properties since its invention in 1960s [101]. It successfully deals with the electron-

electron interactions, and preserves the  𝑇-square resistivity and linear in 𝑇 specific heat 

𝐶𝑉 in metals. The basic idea of Fermi liquid theory is the “quasiparticle”, an electron like 

excitation with effective mass modified by interactions with other electrons or lattice, 

some of the materials have very large effective mass are called heavy fermions, such as 

YbRh2Si2, the material we focused on in this thesis.  
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Fermi liquid theory starts from Fermi gas, and then slowly turn on the interactions. 

Landau assumes the original non-interacting states will smoothly and continuously 

evolve into interacting states. Take 3He as an example. 3He have two neutrons, one 

proton and two electrons, so the atom is a fermion. When the 3He is in high temperature 

gas state, a negligible interaction between these fermions would be expected, and the 

whole system is Fermi gas. If we turn on the interaction adiabatically, the ground states 

of Fermi gas should transform into ground state of the interacting system. In this process, 

the spin and charge remain unchanged, but the effective mass and magnetic moment will 

be renormalized into different values. The old excited single particle states of non-

interacting Fermi gas are occupied by quasiparticles. These states are not exactly 

eigenstates in the new interacting system, but they can approximate the excited 

eigenstates for long time when the excitation is close to Fermi surface. These long-lived 

quasiparticle excitations near Fermi surface is the primary assumption of Fermi liquid 

theory. 

People might have question about the adiabatic switching process reliability, 

because when the electron interactions excite the quasiparticle states, these states should 

decay exponentially following Fermi’s golden rule, and whether we have quasiparticles 

left after we slowly turning on the interaction is a question. On the other side, if we turn 

on the interaction too fast, the process would not be adiabatic and there would be no one-

to-one corresponding quasiparticles states. According to Fermi liquid theory, the only 

excitation states that remain stable are the states close to Fermi surface. We could get 

basic understanding of the reason considering the scattering process. Suppose the system 

is close to temperature limit that almost all states below Fermi surface are occupied. 
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Consider one particle excited above the Fermi energy 𝐸𝐹 with energy 𝜖1 > 𝐸𝐹 and 

momentum 𝐏1, if it scatters with another particle below Fermi surface with energy 𝜖2 <

𝐸𝐹 and momentum 𝐏2, the only result is two particles with energy 𝜖3 > 𝐸𝐹 and 𝜖4 > 𝐸𝐹, 

and the momentum are 𝐏3 and 𝐏4 respectively, because almost all states below Fermi 

surface are fully occupied, so the two particles after scattering must be above Fermi 

surface. The conservation of energy and momentum require that: 

 𝜖1 + 𝜖2 = 𝜖3 + 𝜖4  𝑎𝑛𝑑  𝐏1 + 𝐏2 = 𝐏3 + 𝐏4 3-3 

This process can be represented in below: 

 

Figure 3-2 [108]. Feynman diagram showing the scattering process that starts with 

on particle and ends up with two particles and one hole. 

Looking at the conservation constraints above, we notice that 𝜖1 + 𝜖2 = 𝜖3 +

𝜖4 > 2𝐸𝐹, so 𝐸𝐹 > 𝜖2 > 𝐸𝐹 − (𝜖1 − 𝐸𝐹). Intuitively speaking, when 𝜖1 becomes closer 

to 𝐸𝐹, 𝜖2 would have less choices, and this means less scattering rate and longer lifetime 

according to Fermi’s golden rule. If we take a more detailed look in momentum space, 

and rewrite the conservation constraints above as: 
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 𝐏1
2 + 𝐏2

2 = 𝐏3
2 + 𝐏4

2  𝑎𝑛𝑑  𝐏1 + 𝐏2 = 𝐏3 + 𝐏4 3-4 

Because 𝐏1
2 + 𝐏2

2 = (𝐏1+𝐏2)2

2
+ (𝐏1−𝐏2)2

2
 and 𝐏3

2 + 𝐏4
2 = (𝐏3+𝐏4)2

2
+ (𝐏3−𝐏4)2

2
, the 

constraints above can be rewritten as: 

 (𝐏1 − 𝐏2)2 = (𝐏3 − 𝐏4)2  𝑎𝑛𝑑  𝐏1 + 𝐏2 = 𝐏3 + 𝐏4 3-5 

In momentum space, the first constraint means the two particle “distance” does 

not change, and second constraint means that the two particles “center of mass” position 

does not change. So it is easy to see that for given 𝐏1 with |𝐏1| > |𝐏𝐹| and 𝐏2 with |𝐏2| <

|𝐏𝐹|, the possible scattering results 𝐏3 are distributed on a sphere with center at 𝐏1+𝐏2
2

 and 

radius equals |𝐏1−𝐏2|
2

, and 𝐏4 is at the symmetric other side of sphere. To guarantee 

possible solutions exist, in other words there is solution that  |𝐏3| > |𝐏𝐹| and |𝐏4| > |𝐏𝐹|, 

this sphere should has at least half of surface area outside of the Fermi surface, and this 

limit the possible choice of 𝐏2. When  𝐏1 becomes very close to Fermi surface, the 

possible volume of  𝐏2 and solution sphere area for 𝐏3 and 𝐏4 go to zero, and this means 

the lifetime of particle will diverge and the quasiparticle is well-defined. To better 

understand this idea, I plot a diagram to represent possible 𝐏2 choice and possible 𝐏3 and 

𝐏4 solutions in figure below: 
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Figure 3-3. possible scattering process between a particle(1) above Fermi surface 

and another particle(2) below Fermi surface. The results are two particles(3 and 4) 

above Fermi surface. Blue circle represents Fermi sea or Fermi surface, black circle 

is the possible solution that decided by particle 1 and particle 2, red 

curves(corresponds to belt in three dimension) are the possible solution for particle 

3 and particle 4. 

If we define 𝛿𝑃 = |𝐏1| − |𝐏𝐹|, as 𝛿𝑃 → 0, the possible choice of 𝐏2 is limited to a 

thin shell with thickness  𝛿𝑃 and radius |𝐏𝐹|. The ratio total volume of this shell to the 

whole Fermi sea is proportional to 𝛿𝑃
|𝐏𝐹|

. Also, the choice of 𝐏3(length of red curve in 
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Figure 3-3) is proportional to 𝛿𝑃
|𝐏𝐹|

. So the total possible number of solutions is 

proportional to ( 𝛿𝑃
|𝐏𝐹|

)
2
∝ (𝛿𝜖

𝐸𝐹
)
2
, where  𝛿𝜖 = 𝜖1 − 𝐸𝐹. According to Fermi’s golden rule, 

the decay rate is proportional to the total number of possible scattering, and the lifetime, 

inverse of scattering rate, is proportional to  (𝐸𝐹
𝛿𝜖

)
2
which diverges as 𝛿𝜖 → 0. So, the 

quasiparticle states close to Fermi surface would be stable. Here I only consider the 

interaction with particles below Fermi surface and assume states below Fermi surface are 

fully occupied, in real situations, the interaction between quasiparticles and unoccupied 

states below quasiparticles always make them have finite lifetime.  The well-defined 

quasiparticles make the Fermi liquid share many similar features with Fermi gas, such 𝑇-

square resistivity at low temperature. More theoretical explanations can be found in 

Ref [108–111]. 

 

3.3. Strange metal 

Normal metal’s resistivity changes with temperature mostly because electron 

phonon scattering reduce the electron mean free path. This leads to two saturations at 

both low temperature side and high temperature side. At low temperature side, the 

quantized lattice vibrations are frozen out, and metal should have normal metal 𝑇-square 

resistivity plus residual resistivity according to Fermi liquid theory. At high temperature 

side, the mean free path can not be shorter than the atom distance, which set the lower 

bound for electron mean free path and higher bound for resistivity which is called Mott-
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Ioffe-Regel(MIR) limit. However, there exist some “metals” have linear in temperature 

resistivity but do not saturate at either low temperature end or high temperature end or 

both. One of the most well-known example is cuprate which can have linear in 

temperature resistivity down to millikelvin [112,113] and up to 1100 K [114,115]. The 

mechanism of this “strange” behavior is still unclear, and people are even not sure if 

these “strange” behaviors in different systems share same reason because they show 

different types of “strange” behavior. For example, SrRuO3 [116] and Sr2RuO4 [117] 

show linear in temperature resistivity at high temperature(1000 K)  that is much higher 

than MIR limit, but have 𝑇-square resistivity at low temperature that is consistent with 

Fermi liquid theory. Another type of “strange” metal, such as YbRh2Si2  [118,119] and 

YbBAl4(T exponent close to 1.5 rather than 1 at lowest temperature in YbBAl4)  [120], 

have strange metal properties at low temperature but the resistivity saturates at high 

temperature. Most of time, the strange metals refer to the materials with linear in 

temperature resistivity at low temperature. More examples of strange metals can be found 

in Ref [121]. Recently, researchers even find strange metal behavior in a bosonic system 

by punching array of holes on superconductor YBCO film [122], and they suggest there 

is a fundamental principle governing the transport that transcends the particle statistics.  

There are many models trying to solve the strange metals problems such as 

phenomenological marginal fermi liquid [123], numerical Hubbard model [124], and 

gravity-related anomalous dimensions/Einstein-Maxwell-Dilaton model [125]. We won’t 

discuss the details of theory model in this thesis, and reader can find more information in 

Ref [121]. YbRh2Si2, the material we focused on in this thesis, show quantum criticality 

below 70mK by tuning magnetic field, and there is large range strange metal phase about 
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this temperature. There are two broad classes of theories on metallic quantum critical 

point (QCP).  One follows the standard Landau approach of order parameter fluctuations, 

and quasiparticles retain their integrity.  Other approaches go beyond the Landau 

framework, by contrast, no long-lived quasiparticles are expected to remain. We hope to 

use noise measurement to reveal the possible mechanism in this system. 

 

3.4. Quantum critical point in YbRh2Si2 

In 1990s, people found some Ce-based f-electron heavy fermions deviate from 

Fermi liquid theory prediction at low temperature, where they can be tuned through 

antiferromagnetic quantum critical point by one control parameter such as doping, 

pressure and magnetic field [126,127].The non Fermi liquid behavior in YbRh2Si2 was 

first experimentally discovered by Trovarelli in 2000 [128]. They found the linear in 

temperature resistance below T = 10 K and magnetic phase transition around T = 65 mK. 

The results are shown in Figure 3-4. The left panel shows the magnetic phase transition 

below 65 mK, and this phase transition can be suppressed by increasing magnetic field. 

The resistivity is almost flat at high temperature range, but decreases fast below T = 100 

K. The right panel shows the strange metal linear in temperature resistivity behavior 

below about 10 K. And this strange metal recover Fermi liquid T-squared resistivity after 

applying 6 T or higher out of plane magnetic field. They ascribed the non fermi liquid 

behavior to the presence of quasi-2D antiferromagnetic spin fluctuations related to this 

weak magnetic phase transition.  
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Figure 3-4 [128]. YbRh2Si2 non Fermi liquid behavior at low temperatures. Left: 

magnectic susceptibility of YbRh2Si2 dependence on temperature at different 

magnectic field. There is magnetic phase transition below T = 65 mK at B = 0 T, this 

phase transition is suppressed by increasing magnetic filed and disapper at T = 0.05 

T. Inset shows the resistivity dependence on large temperature range at different 

pressure. Right: low-temperature electrical resistivity of YbRh2Si2 at pressure p = 0 

measured along a  axis as function of temperature, following 𝜌(𝑇) = 𝜌0 + 𝑏𝑇𝜀 with 

𝜀 ≈ 1. (a). Temperature dependence of the effective exponent 𝜀, defined as the 

logarithmic derivative of ∆𝜌 = 𝜌 − 𝜌0 with respect to temperature 𝑇. (b). resistivity 

dependence on temperature 𝑇2. The T-squared resistivity recovered when the out 

of plane magnectic field increases higher than 6 T. 

Two years later, researchers from same group got more detailed data on 

YbRh2Si2  [129].  They measured resistivity depending on temperature for multiple 

magnetic field perpendicular and along c axis, and plot phase diagram according to the 
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resistivity measurement shown in Figure 3-5 below. Panel C shows the phase diagram 

with quantum critical phase transition. The quantum critical point at temperature T = 0 K 

by tuning magnetic field separates an antiferromagnetic phase and weakly polarized 

heavy fermion phase. 

 

Figure 3-5 [129]. YbRh2Si2 low temperature resistivity dependence on temperature 

at varying magnetic fields applied along a axis (a) and along c axis (b). The 

resistivity are shifted by 0.1 𝜇Ωcm for different magnetic fields for clarity. The solid 

and dotted line are fittings using ∆𝜌~𝑇𝜀 with 𝜀 = 2 and 1 respectively. Arrows 

indicate the temperature below which the YbRh2Si2 has Fermi liquid T-squared 

resistivity. (c). The Fermi liquid T-squared resistivity is suppressed by increasing 

magnetic field. The YbRh2Si2 T-B phase  diagram. TN is the Neel temperature 

seperating the antiferomagnetic phase and non fermi liquid phase. T∗  is the 

temperature seperating the non fermi liquid phase and Landau Fermi liquid phase. 

The magnectic filed values for B perpendicular to c axis is multiplied by a factor 11 

to clarity. 
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More and more experiments on YbRh2Si2 were done after this. In 2003, people 

dope Ge to YbRh2Si2 and make high quality YbRh2(Si0.95Ge0.5)2 single crystal with 

critical field heavily suppressed as low as 𝐵𝐶 = 0.027 T (𝐁 ⊥ 𝐂), as shown in Figure 3-

6 [118]. They found universal behavior in the temperature dependence of the specific 

heat and resistivity when YbRh2(Si0.95Ge0.5)2  is tuned away from quantum critical point. 

In 2007, people reported an energy scale in the equilibrium excitation spectrum in 

addition to the one expected from slow fluctuations of the order parameter. Both energy 

scales go to zero when quantum critical point is reached, and provide evidence of a new 

class of quantum criticality [130]. In 2009, researcher found more complicated field-

chemical pressure(by changing doping) phase diagram at low temperature [131]. In 2016, 

people even discovered the superconducting phase in YbRh2Si2 at extremely low 

temperature (around T < 2 mK)  [132]. There is also experiment focusing the strange 

metal phase in YbRh2Si2. In 2020, people measured optical conductivity on molecular 

beam epitaxy-grown thin YbRh2Si2 films, and the results suggest that critical charge 

fluctuations play a central role in the strange metal behavior [133]. 
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Figure 3-6 [118]. Evolution of 𝜀, the exponent in ∆𝜌(𝑇) = [𝜌(𝑇) − 𝜌0] ∝ 𝑇𝜀 , within 

the temperature-field diagram of YbRh2(Si0.95Ge0.5)2 single crystal. 
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Chapter 4 

Experiment setup 

4.1. Low frequency noise measurement 

4.1.1. Low frequency noise measurement setup 

To mitigate the input noise of the voltage amplifiers used in the measurement, we 

used two independent amplifier chains to measure the low frequency (below 100 kHz) 

voltage noise under a known dc current bias.  Amplifier noise for the two chains is 

nominally uncorrelated, while voltage fluctuations across the sample will be detected by 

both chains.  Cross-correlation of the amplifier outputs then reveals the noise from the 

sample itself [134].   Figure 1C shows the electrical circuit diagram of the experimental 

setup.  A programmable voltage source (NI-DAQ6521) was followed by multiple LC 

filters to drive a clean dc current through two large current-limiting resistors (~1 MΩ 

each). The sample was mounted on a custom low frequency measurement probe and 

inserted into a cryostat (Quantum Design PPMS).  The noise measurement is very 

sensitive to environmental influence, so the whole probe is isolated from PPMS’s ground. 
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The measurement wiring are twisted pairs to reduce magnetic field induced noise. The 

sample, LC filters, transmission lines and first pair of pre-amplifiers are shielded by a 

Faraday cage to reduce environmental noise.  The voltage noise generated by the 

resistance fluctuations is collected by two separate amplifier chains, each consisting of 

two preamplifiers (NF LI-75 and Stanford Research SR-560).  The two amplified signals 

are recorded by a high-speed data acquisition device (Picoscope 4262). Typically time 

series containing 2,000,000 data points is taken with a sampling rate of 10 MHz. The 

cross-correlated noise spectral density is calculated based on the two separate time series 

(𝑥𝑡 and 𝑦𝑡) from each amplifier chain, averaged over 200 to 300 times: 

 
𝑆𝑥𝑦(𝑓) = ∑ E[𝑥𝑡𝑦𝑡+𝜏]

∞

𝜏=−∞ 

𝑒−2𝜋𝑖𝜏𝑓 
4-1 

 

where E[ ] is expectation value. Unavoidable parallel parasitic capacitance comes from 

the sample mounting and cryostat wiring, leading to the capacitive suppression of 

measured voltage noise at high frequencies. The measured noise spectral density can be 

expressed as:  

 
𝑆𝑉(𝑓) =

4𝑘𝐵𝑇𝑅 + 𝑆𝑣,𝑅

1 + (2𝜋𝑓𝑅𝐶𝑃)2 × 𝐺 
4-2 

 

where R is the differential resistance of the sample at the applied bias current, 4𝑘𝐵𝑇𝑅 

is the Johnson-Nyquist thermal voltage noise, 𝑆𝑣,𝑅 is the voltage noise from resistance 

fluctuations, 𝐶𝑃 is parasitic capacitance, and 𝐺 is the total power gain. Data are consistent 

with a constant 𝐶𝑃 (~320pF). 
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Figure 4-1: Electrical circuit diagram of low frequency noise measurement setup.  The 

filtered constant current flows through the device, supplied by a programmable voltage 

source NI-DAQ (red color) and current-limiting series resistors (orange color, values 

depend on maximum current required).  Customized low pass filters (blue color) prevent 

high frequency noise from the voltage source from reaching the sample.  The voltage 

fluctuations across the sample (shaded rectangle) are amplified by two chains of 

preamplifiers in parallel (green color); both amplifier chains are recorded by a high speed 

digitizer Picoscope 4262 (purple color). The dashed line is a Faraday cage to shield the 

environment noise. 
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4.1.2. Low frequency noise measurement calibration 

The room temperature thermal noise of a variety of resistors was used to calibrate 

the setup. The voltage noise power spectral density found from the cross-correlation can 

be expressed as 

 
𝑆𝑉(𝑓) =

4𝑘𝐵𝑇𝑅𝑠

1 + (2𝜋𝑓𝑅𝑠𝐶𝑃)2 × 𝐴 
4-3 

  

where  4𝑘𝐵𝑇𝑅𝑠  is the Johnson-Nyquist voltage noise at the resistor Rs, 1/(1 +

(2𝜋𝑓𝑅𝑠𝐶𝑃)2) is the decay coefficient because of parasitic capacitance, 𝐴 is a coefficient 

containing the squared amplifier gain and a numerical factor related to the cross-

correlation parameters (number of data points of each time series, the sampling frequency 

and the Hanning window for the Fourier transform).  

The thermal noise spectra for different resistors are shown in Figure 3.2.a. The 

lowest spectrum is corresponding to 15 Ω thermal noise, and highest one is 10 kΩ. The 

noise peaks at 60 Hz, 120 Hz, 180 Hz and higher harmonics result from pick-up of 

environmental noise.  Despite strong efforts to optimize measurement grounding, these 

peaks are related to AC electrical power and are very hard to totally suppress even by the 

cross-correlation method. The decay of 𝑆(𝑉) at high frequencies results from effective 

low-pass filtering due to parasitic capacitance and the differential resistance of the 

device.  As expected from the expression  1/(1 + (2𝜋𝑓𝑅𝑠𝐶𝑃)2), the noise of larger 

resistance devices decays more rapidly with increasing frequency.  Each spectrum is 

fitted with the formula: 
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𝑆𝑉,𝑚𝑒𝑎𝑠(𝑓) =

𝑆
1 + (2𝜋𝑓𝑅𝑠𝐶𝑃)2 × 𝐴 

4-4 

 

The fitting curves are shown by narrow colorful curves.  A robust fitting 

technique [45,135] was applied to reduce the impact of environment pick up peaks on the 

fitting results.  

In Figure 3.2.b, we plotted the fitting results 𝑆 × 𝐴 versus 𝑅𝑠. A linear regression 

finds the relation between noise intensity and resistance: 

 𝑆 × 𝐴 = 5.14−13 × 𝑅𝑠 + 1.129−12 4-5 

 

The intercept means the system has around 2 Ω room temperature (T  297K) 

thermal noise background, and this is much smaller than the noise intensity we measured. 

The linear fitting is shown by the red line in Figure 3.2.b. The fitting matched very well 

with experiments, showing that the zero-bias noise intensity is strictly linearly 

proportional to the resistance, as expected for Johnson-Nyquist thermal noise. The fitting 

is shown in log scale to see all data clearly. From the formula above, we find the value of 

𝐴 = 5.14−13

4𝑘𝐵𝑇
= 3.14 × 107.  From our definition, 𝐴 is dimensionless. 

It is worth noting that the value 𝐴 maybe related to the parameters setting of the 

data taking program, including sampling frequency, window function, data points, noise 

probe and so on. We calibrate every time after we adjust these parameters setting. We 

also used the thermal noise change of constant resistor from 300K to 2K to calibrate 
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setup. The process is totally same as above, but varying T rather than R, and I won’t 

repeat the description. 

 

 

Figure 4-2: (a) Low frequency thermal noise spectra for different resistors at room 

temperature. Resistance varies from 15 Ω to 10 kΩ. A robust fitting procedure is applied 

to reduce the influence of unintended environmental pick up of discrete narrow-band 

signals. (b) Noise intensity versus resistances value. Linear fitting between the noise 

intensity and resistance is shown by the red line. 
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4.2. High frequency noise measurement 

4.2.1. High frequency noise measurement setup 

We used two approaches to measure noise power at radio frequencies in the V2O3 

experiments, both requiring that the sample be mounted on a second custom probe with 

coaxial wiring and a RF-specialized sample carrier with integrated bias-tee (1nF 

capacitor and 12 μH inductor).  In the first approach, we use high frequency amplification 

and a spectrum analyzer to record the frequency-dependent noise spectral density (10 

MHz - 1 GHz) directly.  Effective bias tees allow the separation of current-biasing of the 

sample and measurements of the RF power. The voltage source (NI-DAQ6521) and 

current-limiting resistor provide a constant bias current through sample, and the 

unfiltered signal is amplified by three RF power amplifiers (20dB gain for each).  The 

high frequency spectrum is recorded by a spectrum analyzer(E4402B) and each spectrum 

is averaged over 200 times.  It is necessary to account for the frequency-dependent 

background noise power (originating from noise on the input stage of the first RF 

amplifier and waveguide modes due to impedance mismatch between the sample and the 

50 Ω RF system).  To do this, the extra noise spectrum due to the applied bias current (the 

data of interest) is obtained by subtracting the zero-bias spectrum from each particular 

spectrum.  

We also used a lock-in technique [136,137] to measure the integrated noise power 

from 225 MHz to 580MHz. A square-wave bias (7.7 Hz) between 0 V and the desired 

bias voltage level is generated by a function generator (DS345) and applied to one side of 

the sample through a current-limiting resistor and LC circuit (to limit the current and 
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suppress any extrinsic high frequency noise from the biasing setup, respectively). At the 

output port, the low frequency current flows through the inductor and is recorded by the 

combination of current amplifier (SR 570) and lock-in amplifier (SR 7265). The high 

frequency noise signal flows through the capacitor and is filtered by a low pass filter (< 

580 MHz) and high pass filter (>225 MHz). The filtered signal is amplified by three RF 

power amplifiers (20dB for each) and detected by a power detector (Mini-Circuits zx47-

60LN-S+ 10-8000MHz). The integrated RF noise intensity is thus converted to a voltage 

signal and recorded by a lock-in amplifier (SR7270) synchronous with the square wave.  

Analogous to the low frequency approach, we used thermal noise of different value 

resistors to calibrate the high frequency setup.  Because of the huge range of V2O3 sample 

resistance change during the  metal-insulator transitio, the impedance mismatch is 

unavoidable for our measurement.  The dominant contribution to the sample impedance 

appears to be the resistance.  We used the thermal Johnson-Nyquist noise of different 

value resistors to calibrate the RF setup detection efficiency as a function of sample 

resistance. The total collected power can be expressed as: 

 
𝑃 =

4𝑘𝐵𝑇
𝑅

×
𝑍𝑅2

(𝑅 + 𝑍)2 × 𝐴 + 𝑆𝑏 
4-6 

 

where 𝑃 is the total detected power; 4𝑘𝐵𝑇/𝑅 is thermal Johnson-Nyquist current noise 

intensity, 𝑅 is the resistance for each resistor used to do the calibration, 𝑍 (50 Ω) is the 

impedance of transmission line, power amplifier and power detector. 𝐴 is the product of 

bandwidth and gain, which is independent of sample resistance. 𝑆𝑏 is the measurement 

system background noise power. 
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Figure 4-3: Electrical circuit diagram of high frequency noise measurement setup. 

Current bias is applied to the sample (shaded rectangle) using a voltage source and 

function generator and a current-limiting series resistor (20 k Ω).  The high frequency 

signal and low frequency bias current are separated by bias tees (C = 1 nF, L = 12 μH). 

Function generator and lock-in amplifier combined to measure integral noise (225 MHz 

to 580 MHz). High frequency spectra are recorded by spectrum analyzer when applying 

constant current by voltage source. 

4.2.2. High frequency noise measurement calibration 

One key difficulty for the high frequency noise measurement is the impedance 

mismatch problem between the device of interest and the 50 Ω  RF measurement 

electronics. When RF power is transferred to one end of a coaxial cable, the signal would 

be reflected back if the terminating impedance is different than the effective impedance 

of coaxial cable.  The reflection of the signal is related to the signal frequency. The 

reflected signal will interfere with the original to make frequency-dependent standing 
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wave resonances in the system. In many standard RF circuits, all the components, such as 

the transmission lines and input/output impedances of filters and amplifiers, are designed 

to a characteristic impedance of 50 Ω, to minimize reflections and standing waves as well 

as free-space radiation. However, the resistances of our devices can vary over several 

orders of magnitude across the metal-insulator transition, altering the RF pick up 

efficiency.  For loads well over 50 Ω, one approach is to use LC circuits to transform or 

match the impedance to measurement electronics, but it is difficult for such a network to 

work for a large resistance range, and the narrow-band matching tends to lose broad-band 

information.  

We used the thermal noise from different resistors at different temperatures to 

calibrate our broadband RF setup in two different ways, determining the frequency-

dependent measurement efficiency for different resistance values. The noise spectra for 

substituting a 50 Ω resistor for the sample from T = 300 K to 10 K are shown in Figure 

3.4.a. The upper blue curve is the thermal noise spectrum at 300 K, and the lowest one is 

10 K. The peaks below 100 MHz and around 750 MHz are the background from the 

power amplifier chain and spectrum analyzer, which affect the measurement in those 

ranges. The spectrum is frequency dependent because the power amplifiers (Minicircuits 

zx60-33LN-S+) have frequency-dependent gain over this broad range. The small 

oscillation at higher frequency is likely caused by parasitic reactance contributions. The 

integrated noise from 250 MHz to 400 MHz for a 50 Ω  resistor as a function of 

temperature are plotted in Figure S2.b. The red line is a linear fit. The noise and the 

resistor are expected to have the relation: 
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𝑃 =

4𝑘𝐵𝑇
𝑅0

×
𝑍𝑅0

2

(𝑅0 + 𝑍)2 × 𝐴 + 𝑆𝑏 
4-7 

 

Here 𝑃  is the total detected power; 4𝑘𝐵𝑇/𝑅0  is thermal Johnson-Nyquist current 

power spectral density, 𝑅0 is the resistance for each resistor, 𝑍 (50 Ω) is the impedance of 

transmission line, power amplifier and power detector. 𝐴 is the product of bandwidth and 

gain, which is independent of sample resistance.  𝑆𝑏 is the system background intensity, 

including the power amplifier background and the environment background from 

measurement system.   We have repeated these temperature-dependent measurements for 

a variety of different resistors.  The slopes for different resistors are shown in Figure 

3.4.c. The formula for the measured power is used to fit the resistance-dependent slope 

and is shown by the red curve. The curve does not converge to zero in the high R0 limit, 

implying that there is an environmental background changing with temperature.  Using 

the relationship above, and the inferred values of A and Sb, we can then convert between 

measured broadband noise and the intrinsic noise at the sample.   

For a related approach, we use the thermal noise of a 50 Ω load between two different 

reference temperatures as a known amount of input noise, to find the corresponding 

output noise of the amplifier chain.  The ∆T = 290 K 50 Ω thermal noise spectrum is 

obtained by using the T = 300 K noise spectrum and subtracting the T = 10 K noise 

spectrum, to minimize the effect of background noise, and shown in in Figure S2.d.  This 

standard 50 Ω ∆T = 290K thermal noise spectrum is used as a reference to calibrate other 

RF spectra we measure. 



 86 
 

 

Figure 4-4:  (a) High frequency thermal noise spectrum of 50 Ω resistor at different 

temperatures. (b) The integrated noise from 250MHz to 400MHz as a function of 

temperature. Linear fitting between noise intensity and temperature is shown by the red 

line. (c) The slope of analogous linear fits for different load resistors, as a function of the 

load resistance. Red line is the fit using the theoretical expectation for different resistors 

and including a background. (d) The standard ∆T = 290 K 50 Ω thermal noise spectrum 

obtained by using the increase of 50 Ω  thermal noise from 10K to 300K minus the 

increase of background. The inserted figures are spectra of the 50 Ω resistor and the 

unterminated open ended measurement setup at 10 K and 300 K respectively. 
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Chapter 5 

Percolation and nanosecond fluctuators in 
V2O3 films within the metal-insulator 

transiton 

In this thesis we report measurements of the intrinsic, thermally driven resistance 

fluctuations in the mixed phase regime of the V2O3 metal-insulator-transition, via noise 

spectra under bias currents sufficiently small as to be non-perturbative [138].  We extend 

the frequency range of noise measurements up to 1 GHz, and find resistive fluctuations 

(noise intensity quadratic in measurement current) up to several hundred megahertz, 

implying the existence of nanosecond fluctuators, a timescale comparable to those found 

in experiments probing the nonequilibrium metal-insulator transition.  Lorentzian-like 

roll-offs are seen at the upper limit of our frequency range, and particularly toward the 

insulating regime, indicating that noise can be dominated by a small numbers of 

fluctuators.   We compare noise intensities and scaling with those expected from 
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thermodynamic considerations of the transition and its percolative nature.  We find 

quantitative agreement with a 2D percolation model based on fluctuations in percolating 

fraction, though the thermodynamics of the transition make it unlikely that fluctuation-

driven transitions of entire domains between metallic and insulating states are at work.    

In devices with the largest current density, the dependence of the noise intensity with bias 

current becomes superquadratic, implying that the applied bias is perturbing the dynamics 

of the fluctuators.   

 

5.1. Device fabrication 

V2O3 thin films 100 nm-thick were grown epitaxially on r-cut sapphire substrates 

by RF magnetron sputtering deposition by our collaborator Ivan Schuller at UC San 

Diego.  For measurement, 70 nm thick Au electrodes (6 nm V adhesion layer) were 

patterned by electron beam lithography, electron beam evaporation, and liftoff.  After 

lithography and development, the exposed surface was cleaned by Ar plasma (9W) for 1 

minute before electrode deposition. The ratio of width to height of each electrode gap is 

fixed to 1:4 for all device sizes as shown in Figure 1A. The large electrode bonding pads 

are farther to the two sides, separated by around 3 mm. To avoid possible 

inhomogeneities in composition and film degradation from the etching process, the films 

were left intact, with electrode design and aspect ratio ensuring that the device 

conduction is limited by the interelectrode region (Figure 5 -1 .a,b).   Four device 

geometries (10  40 μm, 20  80 μm, 40  160 μm, 80  320 μm ) were used, all with 
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identical aspect ratios, such that two-terminal device resistances in the metallic state were 

identical for all devices, but with varying current densities for the same applied bias. 

 

Figure 5-1: (a) Optical microscope image of the 10 μm  40 μm device. The Au(70 

nm)/V(7 nm) electrode are deposited on the surface of V2O3 film, leaving a narrow gap 

with width height ratio equals 0.25. (b) The simulation from Comsol shows most of 

current (shown here in arbitrary units) is confined in the small region between the gap 

when the film resistivity is in the range explored in the present noise measurements. 

 

5.2. Device characterization  

The DC electronic conduction of the V2O3 film devices was measured by recording 

the resistance during the cooling and warming cycle, using a source meter (Keithley 

2400, 10 mV output). The temperature was settled for 5 minutes at every 0.5 K through 

the transition to allow the device temperature to stabilize. Figure 5-2.A shows the 

resistance changes with temperature in the cooling and warming cycle. In the cooling 
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cycle, the antiferromagnetic insulating domains start to appear around 160 K, and 

gradually replace the paramagnetic metallic domains. This transition happens rapidly 

with temperature between 150 K and 130 K, causing the resistance to increase by about 4 

orders of magnitude. The resistance continues to increase to almost 107× larger than the 

pure metallic phase when cooling down to 100K. In the warming cycle, the transition 

from the antiferromagnetic insulating domains to the paramagnetic metallic domains is 

about 7 K higher than cooling cycle, showing thermal hysteresis.   

At each temperature for which we measured noise, the current-voltage (IV) 

characteristic is also recorded. At the low voltage bias range, as shown in Figure 5-2.B, 

the IV curve is almost linear and did not show any obvious hysteresis (either from 

possible current-induced changes in domain configuration, or from heating coupled with 

thermal hysteresis), which allows us to take noise spectrum without considering the effect 

of change of thermal noise.  

 

Figure 5-2: (a) Resistance of the device versus temperature on cooling and warming 

cycle. (b) The IV curve at small bias range in different temperature are almost linear. 
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5.3. Low frequency noise measurement 

Figure 5-3.A shows a T = 143.5 K typical low frequency noise spectrum at equally 

stepped bias currents. The lowest flat spectrum corresponds to zero bias thermal noise 

background. A slope of -1, corresponding to pure 1/𝑓 dependence, is indicated by the 

black line.  For initial analysis, we assume a 1/𝑓 form of the low frequency noise, to 

better highlight deviations from that form.  The spectra are fitted with the formula: 

 
𝑆𝐼(𝑓) =

𝑆𝑉(𝑓)
𝑅2  =

4𝑘𝐵𝑇/𝑅 + S1/𝑓/𝑓
1 + (2𝜋𝑓𝑅𝐶𝑃)2  

5-1 

 

 

where S1/𝑓 is corresponding to the 1/𝑓 noise intensity at frequency equals 1 Hz at given 

current, R is the resistance of device, and 𝑆𝐼(𝑓) = 𝑆𝑉(𝑓)
𝑅2  is current fluctuation.  

 

The contribution to the noise from the resistance fluctuations should have the 

form: 𝐼 + 𝛿𝐼 = 𝑉
(𝑅+𝛿𝑅) = 𝑉

𝑅
− 𝑉

𝑅
× 𝛿𝑅

𝑅
, (𝛿𝐼)2 = (𝑉

𝑅
)
2
(𝛿𝑅

𝑅
)
2
= 𝐼2 (𝛿𝑅

𝑅
)
2

. This implies that 

the current noise from resistance fluctuations should be proportional to the square of the 

bias current, if the resistance fluctuations do not change with current. The dependence of 

the inferred noise intensity S1/𝑓 on bias is shown in Figure 5-3 B. The quadratic relation 

between noise intensity and current shows that this low frequency noise contribution 

results from resistance fluctuations.  
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Figure 5-3: (a) typical spectrum of low frequency noise at 143.5K. The spectrum was 

taken at equally stepped bias. Black line indicates the slope equals -1. (b) Quadratic 

fitting of at 1Hz. 

 

5.4. High frequency noise measurement and comparison with low 

frequency noise 

Figure 5-4.A shows an example of the high frequency noise spectra (with the zero-

bias spectrum subtracted) at several equally stepped bias current values. The normalized 

low frequency spectra are plotted on the same axes to show the full accessible frequency 

information.  The low frequency spectra are scaled using the quadratic current 

dependence so that the highest bias current data for low and high frequency sets are 

equivalent, to account for the different currents in the low and high frequency 

measurements.  The capacitive effects have also been compensated.  From Figure 4.4.A, 

Lorentzian noise is observed in both the high frequency range and low frequency range, 
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implying that individual fluctuators are strongly affecting the total resistive fluctuations 

here. A typical Lorentzian noise has the form 

 
𝑆𝐿(𝑓) ∝

1
(2𝜋𝑓)2 + (1/𝜏)2 5-2 

 

where 𝜏 is the effective lifetime of the fluctuator. According to the fitting, the lifetime of 

these two dominant fluctuators are around 0.35 ns and 176 μs. More RF Lorentzian noise 

examples are shown section 4.5, and the inferred effective lifetimes range from 1 ns to 

0.2 ns. 

 

The RF lock-in detection method can increase the sensitivity at the cost of spectral 

information. Figure 5-4.B shows the measurement of integrated noise intensity at 141K. 

The blue curve is measurement data, the red one is a quadratic fit, again showing 

consistency with the noise intensity being produced through resistive fluctuations.  The 

green curve is a calculation based on fitting the low frequency noise to an expected 1/𝑓 

dependence and extrapolating to the RF bandwidth probed in the lock-in measurement. 

We routinely find that the measured RF signal is larger than the extrapolated expectation.  

This indicates the existence of more high frequency fluctuators than would be expected 

from either the usual 1/𝑓 noise or Lorentzian fluctuators at low frequencies.  

 

The resistive noise, translated into voltage spectral density 𝑆𝑉 via a bias current, is 

typically quantified by  (𝑆𝑉/(𝐼𝑅)2)𝑣𝑠 𝑓 = 𝛼/𝑛.  For reference, values of 𝛼/𝑛 found in 
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disordered metals are 10-21-10-23 cm3 and 10-18-10-21 cm3 for semiconductors, 

respectively [18,139]. Surprisingly, in the mixed-phase regime of the La5/8-xPrxCa3/8MnO3 

MIT, 𝛼/𝑛 is as large as 10-10-10-7 cm3.  In the VO2 mixed phase regime [95], in contrast, 

𝛼/𝑛 is around 10-22-10-24 cm3, comparable to the disordered metal cases.  Here, we find 

𝛼/𝑛  is around 10-18-10-20 cm3, much larger than in VO2 .  Further interpretation is 

challenging without additional assumptions of a microscopic model for the fluctuators, 

discussed below. 

 

Figure 5-4.C,D show how the integrated noise and extrapolated 1/𝑓 noise expectation 

change with resistance.  The noise is maximized in the mixed phase regime, and much 

smaller (below our sensitivity to detect) in the fully metallic state.  In scaling models of 

percolation [18,97,139,140], there is a connection between percolation cluster size and 

resistive noise, such that 𝑆𝑉/(𝐼)2 ∝ (𝑝 – 𝑝𝑐)−𝑘, where 𝑝 is the percolating phase fraction, 

pc is the critical concentration, and 𝑘 is a critical exponent.  Similarly, the resistance 

should also scale critically with p, with the resulting expectation that the normalized 

resistance noise 𝑆𝑉/(𝐼𝑅)2 ∝ 𝑅−𝑥 where x is another critical exponent.  Looking at Fig 5-

4.C and find values of 𝑥 around 1.5.  For comparison, VO2 in the mixed phase regime 

showed 𝑥 values of approximately 2.6 on both the insulating and metallic sides of the 

transition [95]. Differences in the resistive noise of the MIT between VO2 and V2O3 is 

perhaps not surprising, given prior indications that the connections between structural and 

electronic transitions in the two oxides differ [141,142]. 
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The value of 𝑥  = 1.5 on both sides of the mixed phase regime (metal-rich and 

insulator-rich) is quantitatively consistent with predictions of so-called “p-noise” in 

2D [100]. In this model, the noise results from fluctuations that switch off or on 

connections between conducting regions (that is, fluctuations in the conducting fraction 

p) rather than changes in the resistance of the conducting regions themselves.  An 

additional assumption is that the temperature dependence of the fluctuations in p is weak 

compared to that of the resistance itself.  To qualify as 2D, one would require typical 

domain sizes to be larger or comparable to the film thickness.   

 

In light of this agreement with p-noise predictions, it is worth considering how the 

physics of the MIT constrains possible fluctuation mechanisms.  In thermal equilibrium 

at temperature T, statistical mechanics in the canonical ensemble shows that the mean 

square energy content fluctuations of a volume v are given by (𝛿E)2 = (Cvv)kBT2, where 

Cv is the specific heat per unit volume.  If the resistance fluctuations result from some 

thermally fluctuating volume v being fully converted between metallic and insulating 

phases, that would require 𝛿E ~ Lv, where L is the latent heat per unit volume, 65 

J/cm3. [143].  Rearranging, v ~ (Cv/L2)kBT2.  Assuming that the lattice specific heat 

dominates (approximately 3.2 J/Kcm3) and T = 150 K gives a typical volume scale of 240 

Å3, comparable in volume to a single unit cell.  This and the hysteretic nature of first-

order transitions imply that it is unlikely that the resistance fluctuations involve wholesale 

switching of metallic or insulating domains.  The thermal energy available in a typical 

fluctuation should only be sufficient to shift phase boundaries by a couple of lattice 

spacings.  From nanooptical characterization of percolation in this system [87], it is 
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unclear whether such small characteristic distances would be able to alter the connectivity 

of the conducting network sufficiently to explain the relevance of the p-noise model and 

the measured noise intensity.   The appearance of Lorentzian noise in the measurements, 

particularly near the maximum in noise amplitude at the percolation threshold (Fig. 5-

4.A) does suggest that small numbers of fluctuators can have a strong influence on the 

connectivity of the network as a whole. 

 

An alternative possible source of resistive fluctuations and changes in the 

connectivity of conducting regions could be scattering of carriers by fluctuating 

antiferromagnetism, as the system sits at the boundary between the paramagnetic metal 

and the AFM insulator.  Slow fluctuations of AFM domains  [144] lead to 1/𝑓 noise in 

metallic Cr around and below the bulk Neel temperature [145]. The detection of resistive 

fluctuations up to the short timescales accessed in the present experiments further 

constrain possible fluctuation mechanisms to those compatible with such rapid dynamics.  

It is not clear that the hysteretic characteristic of the first-order bulk MIT including the 

structural transformation is compatible with such rapid equilibrium fluctuations.  

 

We also compare the noise intensity for different size devices, the results are 

shown in Figure 5-4.F. For larger devices, the noise due to resistive fluctuations is 

smaller, presumably of ensemble averaging over the larger device area.  In the smallest 

devices, in which the current densities and electric fields are largest, the lock-in 

measurement of integrated high frequency noise shows pronounced deviations from a 
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quadratic dependence of the noise intensity with bias current (Figure 5-7. A).  The 

measured noise shows instabilities at high biases (not readily apparent in the current-

voltage characteristic itself), and tends toward a superquadratic dependence on current.  

These traits indicate that at the high current/field limit, the current itself is no longer 

serving as a nonperturbative probe of resistance fluctuations, but instead is driving 

domain dynamics, including those at hundreds of MHz.  Noise of the kind presented here 

may serve as a sensitive probe for the dynamics of switching phenomena in this system, 

an area of fundamental interest and importance for neuromorphic applications of metal-

insulator transitions [146].    
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Figure 5-4:  (a) Low frequency and high frequency spectrum of same device at 141 K 

(resistance 24 kΩ ). The low frequency noise has been inferred accounting for the 

capacitive roll-off in Eq. (4) and multiplied by a factor to compensate for the quadratic 

current dependence and the current difference between the low and high frequency 

measurements.  The three dashed line are corresponding to 1/𝑓 and two Lorentzian noise 

fitting. (b) The integrated noise measured by power detector(blue), a fit to a quadratic 

current dependence (red), and the expected integrated high frequency noise based on an 

extrapolation of the low frequency spectrum(green) at same temperature assuming a 1/𝑓 

frequency dependence. (c) For each temperature, the integrated noise measured by RF 

power detector with lock-in amplifier, and the expected integrated noise over the same 

bandwidth based on an extrapolation of the low frequency noise assuming a 1/ 𝑓 

frequency dependence. (d) For this same device, resistance R and normalized derivative 

(𝑑𝑅/𝑑𝑇)/𝑅 as a function of temperature for a typical temperature cooldown. (e) The 

integrated noise measured by RF power detector with lock-in amplifier and the expected 

integrated noise over the same bandwidth based on an extrapolation of the low frequency 
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noise assuming a 1/𝑓 frequency dependence versus device resistance. (f) The integrated 

noise versus device resistance for different size devices.  

5.5. Statistic of RF fluctuators lifetime 

The noise spectra in the RF high frequency range shows clear Lorentzian noise 

shapes at some temperatures, which correspond to fluctuators with certain dominant 

effective lifetimes. We fit the noise to the Lorentzian form for noise spectra of the size 

20×80 μm  device, since of the devices it has relatively large signals and a clear 

Lorentzian noise shape. The statistical information is shown in Figure 5-5.A. The mean 

effective lifetime found through this analysis is around 0.5 ns. Two examples of 

Lorentzian noise fitting at T = 143.5K and 140K are shown in Figure 5.5.B and Figure 

4.5.c. The fitting curves are indicated by the dashed lines.  

 

Figure 5-5: (a) Histogram of RF fluctuators characteristic times as inferred from 

Lorentzian noise fits. Most of the effective lifetimes obtained through fitting are around 

0.5ns. (b) and (c) Two examples of Lorentzian noise fitting at T = 143.5K and 140K. The 

arrow indicates the increase of bias current. 
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5.6. Evolution of the low frequency spectrum across the coexistence 

regime 

We examine in detail the evolution of the noise spectra as a function of 

temperature for the 20×80 μm device in Fig. 4.6.  Clear low frequency Lorentzian noise 

is observed when the device resistance value is around 24 kΩ, corresponding to T = 141 

K, near the maximum of the noise magnitude as a function of temperature.  In the 

percolation framework, this should be near the percolation transition for the phase 

coexistence regime.  Near that threshold it is reasonable that individual fluctuators could 

have an outsized influence, as current density can be high in key narrow conductive 

paths [147].  At surrounding temperatures, the noise looks less like a simple Lorentian 

shape, and at the temperature extremes of the coexistence range the noise is more 1/𝑓-

like. 
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Figure 5-6:  (a) The integrated noise measured by power detector and the expectation 

based on 1/𝑓 shape noise versus device resistance. (b) - (f) Low frequency spectrum at 

multiple resistance values. 1/𝑓 noise fittings are indicated by the straight lines. 

 

5.7. Conclusion 

We measured resistance noise in V2O3  films at both low frequency and radio 

frequency ranges across the mixed-phase range of the metal-insulator-transition.  The 

variation of the noise with total resistance across the transition is quantitatively consistent 

with a p-noise model of 2D percolation, in which the noise arises from temporal 

fluctuations in the percolating fraction of the conducting medium.  Lorentzian noise was 

observed in both low frequency and radio frequency ranges, showing the importance of 

individual fluctuators to the connectivity of the metallic domains.   The inferred lifetime 

of fast fluctuators varies from 1 ns to 0.2 ns, approaching the timescale associated with 

the photo-induced insulator-to-metal-transition. The thermodynamics of the MIT suggest 

that fluctuations of entire domains between the equilibrium metallic and insulating 

structural phases are unlikely to be the source of the resistive noise.  These noise results 

call for further examination of the electronic and magnetic dynamics in the mixed phase 

regime at the nanoscale and high frequency scales.  



 102 
 

5.8. Supplementary information 

5.8.1. noise shape dependence on the current density (electric field 

intensity) 

We measured high frequency noise for different size devices with identical aspect 

ratios, from 10 × 40 μm to 80 × 320 μm. The integrated noise intensity measured by 

power detector and lock-in amplifier for different size devices at temperatures in the 

phase coexistence part of the metal-insulator-transition are shown in Figure S4.a-d. For 

the smallest size device with largest current density (electric field), the noise intensity is 

not quadratic with bias current (as would be expected for standard flicker noise due to 

temporal resistive fluctuations), and the noise intensity is not stable at some temperatures. 

As the size of devices increases and the current density decreases, the measured noise 

intensity becomes increasingly quadratic in the bias current.  As in the low frequency 

measurments, the high frequency noise at finite bias current is quadratic in the current, 

consistent with its origination in temporally fluctuating resistive domains.  However, at 

sufficiently large current densities, the more rapid dependence of the high frequency 

noise on bias current shows that the current itself is driving domain dynamics, rather than 

acting as a non-perturbative probe of the resistive landscape. 
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Figure 5-7. (a) - (d) High frequency (225MHz – 580MHz) integrated noise intensity 

for different size devices. The noise intensity versus current become more quadratic 

and stable as the size of device increases and the current density (electric field 

intensity) decreases.  This indicates some electric field-induced change to the 

properties of the resistance fluctuations at the largest fields/highest current 

densities. 
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5.8.2. V2O3 metal insulator transition and IV curves for other size devices 

We measured the metal insulator transition and IV curves for different size devices. 

The 20×80 μm device is already shown in the manuscript. The other three size devices 

are shown in Figure A2.a-f. The different sizes devices show similar metal insulator 

transition at same temperature range. However, in relatively large voltage range, the 

smallest device shows a nonlinear IV curve, because of the comparatively larger electric 

field and current density. This implies the bias conditions can induce dynamical changes 

in the state of the film. 
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Figure 5-8. (a) Resistance versus temperature of size 10×40 μm device. (b) IV 

curves for the temperature range where the noise measurements were taken. The 

smallest size device shows nonlinear IV curves at higher voltage range. (b) - (f) 

Resistance versus temperature and IV curves for other larger sizes devices. The IV 

curves are more linear as device size increases. 
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Chapter 6 

Shot noise indicates the lack of quasiparticles 
in a strange metal 

This Chapter is largely based on the recently published manuscript [148]. Strange 

metals are non-Fermi liquids that most famously exhibit an electrical resistivity linear in 

temperature, T, at low temperatures [149], a response that has been reported across many 

materials families, including cuprate [150–152] and pnictide [153] superconductors, 

ruthenates [154], heavy fermion metals [126,155,156], and twisted bilayer 

graphene [157].  Strange metal properties typically arise at finite temperature above a 

quantum critical point (QCP), often in proximity to antiferromagnetic order [158].  There 

are two broad classes of theories on metallic QCPs.  Within the standard Landau 

approach of order parameter fluctuations, quasiparticles retain their integrity [159,160].  

In approaches beyond the Landau framework [161–164], by contrast, no long-lived 

quasiparticles are expected to remain. Thus, determining the nature of the low energy 

current-carrying excitations is an important means to elucidate strange metals near QCPs. 
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How can we determine whether the current carriers in strange metals are 

quasiparticles?  Shot noise in electrical conduction [42] is a unique probe of mesoscopic 

systems in which the current noise, 𝑆𝐼 =  〈(𝐼 − 〈𝐼〉)2〉,  in a system driven out of 

equilibrium reveals the discrete nature of the charge-carrying excitations.  The Fano 

factor, F, gives the ratio between the measured noise 𝑆𝐼  and 2𝑒𝐼 , the expectation for 

Poissonian transport of ordinary “granular” charge carriers of magnitude 𝑒  with an 

average current 𝐼.  Shot noise has revealed fractionalization of charge in the fractional 

quantum Hall liquid [53,54], fractional effective charges in quantum dot Kondo 

systems [165,166], and pairing in superconducting nanostructures in the normal 

state [45,52].  A lack of granular quasiparticles would naively be expected to suppress 

shot noise, since flow of a continuous fluid should have no fluctuations.    

 

Despite their ubiquity, strange metals have yet to be examined through shot noise 

measurements for several technical reasons, and only few relevant theoretical predictions 

exist [167,168]. In many materials strange metallicity is cut off at low temperatures by 

the onset of superconductivity, which complicates matters because shot noise 

measurements also require an electrical bias 𝑒𝑉 large compared to the thermal scale 𝑘B𝑇 

to distinguish from thermal noise.  Tunneling transport into a strange metal faces the 

challenge that only discrete, individual electrons can be added or removed, likely leading 

to noise dominated by single-electron effects. Fortunately shot noise can be measured 

within a material using a diffusive mesoscopic wire, though this requires nanofabrication 
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of such structures without damaging electronic properties, a major challenge for many 

materials.    

 

We have successfully made mesoscopic wires for noise measurements from 

epitaxial films of the heavy fermion material YbRh2Si2, a particularly well-defined 

strange metal [118,156].  YbRh2Si2 has a zero-temperature field-induced continuous 

quantum phase transition from a low-field antiferromagnetic heavy Fermi liquid metal to 

a paramagnetic one.  The Hall effect displays a rapid isothermal crossover that 

extrapolates to a jump at the QCP in the zero-temperature limit, providing evidence for a 

sudden reconstruction of the Fermi surface across the QCP and an associated change in 

the nature of the quasiparticles between the two phases [169], as expected in the Kondo 

destruction description [161–163] for a beyond-Landau QCP. At finite temperatures, a 

quantum critical fan of strange metallicity extends over a broad range of temperature and 

field [118,129]. Recent time-domain THz transmission measurements [133] of optical 

conductivity of epitaxial films of YbRh2Si2 reveal the presence of quantum critical charge 

fluctuations, supporting the Kondo destruction picture in this system.   

Measuring shot noise in YbRh2Si2 wires directly examines how current flows in a 

system thought to lack discrete charge excitations, and there are clear predictions in 

Fermi liquids for comparison.  We report measurements of shot noise in mesoscopic 

wires patterned from epitaxial films of YbRh2Si2, examined in the strange metal regime 

below 10 K, where phonon scattering is not expected to be relevant to the conductivity.  

The measured noise is found to be far smaller than both weak- and strong electron-
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electron scattering expectations for Fermi liquids, and actual measurements performed on 

a gold nanowire for comparison.  Furthermore, the electron-phonon coupling determined 

experimentally using long YbRh2Si2 nanowires rules out strong electron-phonon 

scattering as a noise suppression mechanism. Therefore, the suppressed shot noise is 

evidence that current-carrying excitations in this strange metal defy a quasiparticle 

description.   

6.1. Device Fabrication 

6.1.1. Film growth 

YbRh2Si2 thin films were grown by our collaborator in the setup of Prof Silke 

Paschen at TU Wien on Ge (001) wafers in a RIBER C21 EB 200 molecular beam 

epitaxy (MBE) system, using a high-temperature (RIBER HT 12) cell for Rh, a medium 

high-temperature (MHT) cell for the Si, and a dual zone low-temperature (DZ-MM) cell 

for Yb. The temperature-dependent growth rates for Rh and Si were determined with 

elemental films, that of Yb with a flux gauge. With these calibrations, the cell 

temperatures were set for stoichiometric growth. A series of films was grown at different 

rates. The film selected for the present study was closest to the ideal 1:2:2 stoichiometry 

according to energy-dispersive X-ray spectroscopy (EDX) measurements, showed no 

foreign phase in x-ray diffraction, had a smooth surface in atomic force microscopy 

(AFM), and the highest residual resistance ratio [170]. The quality is comparable to that 

of the films studied in ref  [133], which were grown with electron beam evaporators 

instead of Knudsen cells for Rh and Si.   
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6.1.2. Reactive ion etch 

To make nanodevices from the film, we need to etch away part of film to define 

the device geometry. There two common types of etching people usually use: 1. Wet 

etching: use chemicals solution that selective react with the sample you want to etch. The 

advantage of wet etching is relatively fast and cheap, and its isotropic etching property 

make it possible to fabricate some special structure device that requires undercut. 

However, wet etching has a big defect that it is hard to control the etch rate and depth, 

making it not practical to fabricate nano devices. 2. Dry etch: there are three major 

instruments to perform dry etch, reactive ion etch(RIE), ion milling and focused ion 

beam(FIB). RIE uses specific gas and electron magnetic field to generate plasma to etch 

samples, ion milling use Ar+ beam to physically etch the sample, and FIB works 

similarly with ion milling but using a different ion Ga+, higher ion energy, and a more 

focused beam. Among the three dry etch methods, RIE works in higher pressure and 

lower accelerating voltage(below 500V), FIB has highest energy ion up to 30 KeV, and 

Ar ion milling lies in the middle. In most cases, RIE is relatively gentle and leave less 

edge damage to your sample. The RIE instrument we used is an Oxford Plasmalab 

System 100/ICP 180 which is known as ICP-RIE. Figure 6-1 shows the mechanism of a 

ICP-RIE. ICP here is abbreviation of inductively coupled plasma. Compared to 

traditional RIE, ICP-RIE has a separate RF power apply current to a coil at the top part of 

chamber to generate switch magnetic field and plasma, then this plasma will be 

accelerated by electric field generated by the other RF power source. 
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Figure 6-1 [171]. Diagram of ICP-RIE. This instrument has two RF power, one is 

used to generate plasma and the other used to generate accelarating electric field. 

Because of the robustness of YbRh2Si2 film, it is difficult to find a proper 

chemical etchant or reactive ion etch (RIE) recipe to etch the YbRh2Si2 selectively 

without damaging the Ge substrate; most etchants remove the Ge faster than the 

YbRh2Si2.  After working with SF6, we choose to use pure argon plasma in a RIE system 

to etch the film through physical sputtering, which has a similar etch rate for both the 

YbRh2Si2 film and the substrate. The etch rate of the film under argon plasma depends on 

the radio frequency (RF) and inductively coupled plasma (ICP) power, but also heavily 

depends on the pressure. Lower pressure means lower scattering probability of argon 

atoms before hitting the film surface, and results in higher argon atom energy. We found 

that if the working pressure is comparatively high (such as 20 mtorr for usual RIE 
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recipe), there will be many sharp islands left on the etched surface, most likely because 

the low energy argon atoms only destroy the surface structure, but do not effectively 

remove the YbRh2Si2 material. If the working pressure is too low, there is insufficient 

plasma density to etch the film. After trials with different pressures, we found that the 

following recipe works well in our Oxford Plasmalab System 100/ICP 180 etcher: 

pressure 4 mtorr, argon gas flow rate 35 sccm, RF power 185 W (corresponding DC 

voltage 400 V), ICP power 700 W. The edge of a region of film following 1 minute RIE 

etching in these conditions is shown in an atomic force microscopy (AFM) in Figure 6-

2.A with a line-cut topograph in Figure 6-22.B. PMMA 950 was used as the protective 

cover of the unetched region and removed by warm acetone with brief sonication, and 

low energy oxygen plasma. The AFM scan image shows the etch rate using this recipe is 

about 47.5 nm per minutes.  

It is worth noting that the etching rate and aspect ratio can change with film 

properties, recipe and instrument conditions, we attach more RIE etching test results in 

the Appendix. 
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Figure 6-2 Ar RIE etch rate test on YbRh2Si2 film. (A) Surface topograph scanned by 

AFM on edge of argon etched film in a 3 μm × 20 μm area. PMMA was used as 

protective layer and removed by acetone. Red horizontal line indicates the position 

of the side view in (B), and red triangles are the two positions used to calculate 

etching rate. (B) Thickness change of etched film under one minute argon reactive 

ion etching. Two gray windows represent the two ranges on protected film to flatten 

the tilted surface and correct corresponding error. The AFM surface topograph 

shows the film was etched by about 47.5 nm in one minute.  

6.1.3. Nanowire fabrication 

The devices are made by several steps of e-beam lithography, sputtering, and 

etching. The steps are summarized in Figure 6-3 A-D. The first row displays the view 

from top, and second row shows the cross-sectional view of the same steps. In first step, 
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standard e-beam lithography using an Elionix ELS-G100 lithography tool on PMMA 

950/495 double layer resist defines the patterns for the two source and drain gold 

contacts. 200 nm thickness gold contacts pads and a 60 nm Cr hard mask layer for RIE 

etch are deposited via AJA ATC Orion Sputtering System, followed by liftoff.  In the 

second step, another round of e-beam lithography and sputtering deposition makes the Cr 

nanowire that serves as the etch mask for the nanowire device.  Two minutes of argon 

RIE under the conditions described above etch away the exposed YbRh2Si2 film. Finally, 

the Cr masks are removed by soaking in 70∘C 37% HCl solution, leaving the gold pads 

and protected YbRh2Si2 nano wires. Wire bonding is used to make connection from the 

device to our customized probe. A small misalignment in the first patterning step left the 

edges of the gold pads exposed to RIE, causing some edge roughness, but this does not 

affect our measurements, because the gold pads close to the nanowires are protected well 

by the Cr nano wire mask in the second patterning step. 

 

Figure 6-3. (A) Two 200 nm gold pads and 60 nm Cr hard mask on top are patterned 

by ebeam lithography and deposited using sputtering. Leaving small gap in middle 

for nano wires. The diagram on bottom shows the side view of same process. Film, 

gold pads and Cr masks are indicated by dark brown, yellow and light gray 

respectively. (B) Nanowire Cr mask is made using similar process as gold pads, 
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shown by the dark gray line. The width of nano wires varies from 150 nm to 300 

nm. (C) The uncovered part of the YbRh2Si2 film is etched in argon reactive ion etch 

for 2 minutes using the recipe in Sect.ion 6.1.2. The light brown color represents the 

etched part, leaving only Ge substrate. (D) The Cr hard masks for gold pads and 

nanowires are removed by warm (70∘C) concentrated HCl solution (37%), leaving 

only golds contact pads and YbRh2Si2 nano wires. 

 

6.2. Device characterization 

The films are patterned into nanowires using the method in section 6.1, and scanning 

electron microscope images are shown in Figure 6-4 (A) and (B). The nanowire shown is 

60 nm thick, 660 nm long, and 240 nm in width.  Thick source and drain contact pads 

ensure that the dominant voltage measured under bias is across the nanowire, and act as 

thermal sinks [72].  An important concern in fabricating nanostructures from strongly 

correlated materials is that the patterning process does not alter the underlying physics.  

As shown in Figure 6-4 (C), the normalized resistance 𝑅(𝑇) of the nanowire closely 

matches that of the unpatterned film, including a dominant linear-in-𝑇 dependence at low 

temperatures.  Similarly, in Figure 6-4 (D) the normalized magnetoresistance (field in-

plane, perpendicular to the current) in the nanowire is nearly identical to that of the 

unpatterned film, showing that the fabrication process did not alter the material’s 

properties.  This consistency also shows that the total 𝑅 is dominated by the wire, as the 
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large contacts are coated in thick gold and would not exhibit such a magnetoresistance.  

Three nanowires patterned from this same film all show essentially identical transport 

and noise properties. 

 

Figure 6-4. YbRh2Si2 nanowire device preparation and characterization. (A) 

YbRh2Si2 nanowire between two large area, thick sputtered Au contacts on top of 

the unpatterned YbRh2Si2 film, deposited to ensure that the measured voltage is 

dominated by the nanowire. (B) Higher magnification view.  Sample fabrication is 

discussed in detail in SI.  (C) Normalized resistance as a function of temperature for 

both the unpatterned film and the etched nanowire, showing linear-in-T resistivity 

in the low temperature limit, as seen previously [133].  (D) Normalized resistance as 

a function of in-plane magnetic field for both the unpatterned MBE film and the 

etched nanowire (B oriented transverse to the nanowire), with curves shifted 

vertically for clarity.  The nearly identical response between nanowire and 
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unpatterned film confirms that patterning did not substantially alter the electronic 

properties of the epitaxial YbRh2Si2 material, and that resistance is dominated by 

the wire. 

 

6.3. Shot noise measurement in nanowire 

A current bias is applied to the device via a heavily filtered voltage source and 

ballast resistors.  Using a custom probe, the voltage across the device is measured 

through two parallel sets of amplifiers and a high-speed data acquisition system.  The 

time-series data are cross-correlated and Fourier transformed to yield the voltage noise SV 

across the device, with the correlation mitigating the amplifier input noise.   Figure 6-5 

(A) shows the variation of the differential resistance as a function of bias current from 

T=3K to 10K. We observed non-linear resistance as bias increase, and we think it is 

related to both the intrinsic non-linearity and electron temperature increase. Figure 6-5 

(B) gives examples of spectra at several bias currents at a base temperature of 3 K with 

zero bias spectrum removed. The spectra are almost flat from 300kHz to 600kHz, so the 

mean value in this range can be used as noise intensity.  At the maximum bias currents 

applied, the voltage drop across the wire is several mV, a bias energy scale considerably 

exceeding 𝑘B𝑇 (0.25 meV at 3 K), as needed for shot noise measurements. 
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Figure 6-5. Noise characterization of a YbRh2Si2 nanowire.  (A) Differential 

resistance 𝑑𝑉/𝑑𝐼 as a function of bias current at 10 K, 7 K, 5 K, and 3 K (top to 

bottom).  Comparison with theoretical shot noise expectations requires this 

information.  (B) Averaged voltage noise spectra (with zero-bias spectra subtracted) 

of a YbRh2Si2 nanowire device at different bias levels at T = 3 K, over a bandwidth 

between 300 kHz and 600 kHz.  This spectral range is free of extrinsic features and 

these voltage noise spectra are used to determine the shot noise at each bias.   Each 

spectrum shown is an average of 4500 spectra with 10 kHz bandwidth.   

The shot noise with Fano factor 𝐹 can be expressed as: 

 
𝑆𝐼 = 𝐹 ⋅ 2𝑒𝐼 coth (

𝑒𝑉
2𝑘𝐵𝑇

) + (1 − 𝐹)4𝑘𝐵𝑇 (
𝑑𝑉
𝑑𝐼

)
−1
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This expression reduces to the Johnson-Nyquist current noise 𝑆𝐼,𝐽𝑁 =

4𝑘𝐵𝑇 (𝑑𝑉
𝑑𝐼

)
𝐼=0

−1
in the zero bias limit and becomes 𝑆𝐼 = 𝐹 ⋅ 2𝑒𝐼 as expected in the high bias 

A B
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limit 𝑒𝑉 ≫ 𝑘𝐵𝑇 .  In the experiment we measure voltage noise, and for ease of 

comparison we subtract off the zero-bias Johnson-Nyquist noise, so that effective Fano 

factors may be estimated by fitting to the voltage-based expression for the shot noise:  

 
𝑆𝑉 = (

𝑑𝑉
𝑑𝐼 )𝐼

2

[𝐹 ⋅ 2𝑒𝐼 coth (
𝑒𝑉

2𝑘𝐵𝑇) + (1 − 𝐹)4𝑘𝐵𝑇 (
𝑑𝑉
𝑑𝐼 )𝐼

−1

] − 4𝑘𝐵𝑇 (
𝑑𝑉
𝑑𝐼 )𝐼=0
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.    

The fitting curves and theoretical shot noise with different Fano factor are shown 

in Figure 6-6. Based on our discussion in Chapter 1 section 1.4, the shot noise in Fermi 

liquid diffusive wire should be close to 1/3 if device length 𝐿 is shorter than electron-

electron scattering length 𝐿𝑒𝑒 or √3/4 if device length 𝐿 is longer than 𝐿𝑒𝑒, however, we 

observed the measured voltage noise is far below the theoretical expectations for shot 

noise in a diffusive nanowire of a Fermi liquid even in the weak electron-electron 

scattering limit. In the Fermi-liquid theory framework with well-defined quasiparticles, 

the only reason to greatly suppress noise to our knowledge is the electron phonon 

scattering, and we ruled out this in the later sections. So our results indicate the lack of 

well-defined quasiparticles. 
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Figure 6-6. Noise vs. bias current for a YbRh2Si2 wire at various temperatures, with 

fits to equation above to extract effective Fano factors(fitted values shown in section 

6.7), for temperatures 10 K, 7 K, 5 K, and 3 K from bottom to top.  Error bars are the 

standard error from 15 repeated bias-sweep measurements.  Also shown for 

illustrative purposes are expectations for 𝐹 = √3
4

, 1
3
  and 0 (dot-dashed curves top to 

bottom, respectively) calculated using the measured differential resistance at each 

temperature.   At all temperatures, the measured voltage noise is far below the 

theoretical expectations for shot noise in a diffusive nanowire of a Fermi liquid even 

in the weak electron-electron scattering limit. 

6.4. Comparison with gold nanowires 

To directly compare the shot noise in YbRh2Si2 nanowire with shot noise in Fermi 

liquid nanowire, we fabricated gold nanowire using standard e-beam lithography ELS-

G100 to design 100 nm wide wire pattern on double layers PMMA(950/495) coated 
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SiO2/Si chip, and using evaporator to deposit 18 nm gold/1nm Ti adhesion leary, finally 

remove PMMA in lift-off process. The two 200 nm thick gold/2nm Ti adhesion layer 

pads were made using same method, leaving about 900 nm gap as the nanowire length. 

The SEM image of the structure is shown in inset of Figure 6-7 (A). Resistance 

dependence on temperature is shown in Figure 6-7 (A), it decreases as temperature goes 

down and saturates quadratically below 10K. The tiny steps on the curves are due to the 

temperature delay between the base temperature and real temperature of devices. To 

guarantee the temperature get balanced, we always wait for 30 minutes at each 

temperature points before we start taking noise measurements. The voltage noise power 

values and Fano factors are much closer to the conventional Fermi liquid expectations, as 

shown in Figure 6-7 (C) and (D).  The slight decrease in Fano factor starting at 10 K and 

above is expected to be a consequence of electron-phonon scattering. The suppressed 

shot noise in YbRh2Si2 nanowire compared with the 1/3 shot noise in gold nanowire tell 

us two things. First, our noise measurement system can correctly measure shot noise in 

nanowire as seen in the gold sample; second, there is something special making the shot 

noise in the strange metal YbRh2Si2 nanowire much smaller, and this indicates the lack of 

well-defined quasiparticles. 
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Figure 6-7. shot noise measurement in a gold nanowire. (A) Resistance dependence 

on temperature of the Au wire (shown in an electromicrograph in the inset). The 

resistance decreases with decreasing temperature and saturates quadratically 

below 10 K. (B) Representative IV characteristics of the Au nanowire at 

temperatures from 3 K to 20 K.   (C) Noise vs. bias current at various temperatures 

(3 K, 5 K, 7 K, 10 K, 15 K, 20 K) plotted as in Fig. 3B. (D) The Fano factor of the gold 

nanowire decreases slightly as temperature increase from 3 K to 20 K, likely due to 

the onset of electron-phonon scattering at the higher temperatures, and remains 

much larger than that of the YbRh2Si2 devices across the whole temperature range. 
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6.5. Additional data 

We have performed measurements on two additional nanowires with virtually 

identical results.  Figure 6-8 is an additional data set on another wire fabricated on the 

same chip as the one in section 6.3. 

 

Figure 6-8. Additional data on another YbRh2Si2 nano wire device. (A) SEM image of 

the device. The nano wire in middle is connected by the two large gold pads on the 
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two sides. (B) Differential resistance 𝑑𝑉 𝑑𝐼⁄  dependence on bias current at multiple 

temperatures.  The curves from top to bottom are for 10 K, 7 K, 5 K, and 3 K 

respectively. (C)-(F) Noise vs. bias current at various temperatures (3 K, 5 K, 7 K, 10 

K), with comparison dashed lines showing expectations for particular Fano factors. 

The orange color error bars are from 15 repeated measurements data and 

connected through straight guide lines. The measured noise remains far below 

theoretical expectations for a diffusive nanowire of a conventional Fermi liquid at all 

temperature. 

While the differential resistance changes with increasing in-plane magnetic field, 

as shown in Figure 6-4 (D), apart from this there is no significant change in the noise 

response.  In Figure 6-9 are data on the device in Figure 6-8 taken in an in-plane field of 

9 T. 
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Figure 6-9. Additional data on another YbRh2Si2 nano wire device at high magnetic 

field. (A) SEM image of the device indicating the direction of magnetic field. (B) 

Differential resistance 𝑑𝑉 𝑑𝐼⁄  dependence on bias current at multiple temperatures.  

The curves from top to bottom are for 10 K, 7 K, 5 K, and 3 K respectively. (C), (D) 

Noise vs. bias current at various temperatures 3 K and 5 K. The data are plotted in 

the same way as zero magnetic field, with comparison dashed lines showing 

expectations for particular Fano factors and orange color error bars showing the 

experiment data. The noise intensity shows same dependence on bias and 

temperature as in the data in Fig. 3A, except for a small difference in overall value 

due to the slightly varied differential resistance. 
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6.6. Phonon contribution estimation using noise measurement in long 

narrow wire 

Electron-phonon coupling effects can suppress the noise in the usual Fermi Liquid 

quasiparticle scenario.  YbRh2Si2 has a Debye temperature more than twice that of 

gold [172], which already makes that scenario unlikely in the present case. To 

experimently rule out this possibility, we need to design further stucture. Here we 

estimate the phonon contribution use the method discussed in subsection 1.4.3. 

In a Fermi Liquid, strong electron-phonon scattering can suppress shot noise by 

anchoring the quasiparticle distribution function to the temperature of the lattice.  As 

shown by Henny et al. in Ref [72], the electron-phonon coupling strength 𝛤  can be 

determined experimentally by measuring the noise as a function of bias current in a wire 

much longer than the electron-phonon scattering lengthscale.  In this limit, the electron 

temperature profile within the wire is modeled by the equation: 

 

𝜋2

6
𝑑2𝑇𝑒

2

𝑑𝑥2 = −(
𝑒𝐸
𝑘𝐵

)
2

+ 𝛤(𝑇𝑒
5 − 𝑇𝑝ℎ

5 ) 
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where 𝑇𝑒 is the local electron temperature, 𝑥  the position on the nanowire, 𝐸 the local 

electric field, and 𝑇𝑝ℎ the phonon temperature, which equals the base temperature. The 

model is derived assuming that all the Joule heating power within a small segment of 
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wire is conducted away via electronic thermal conductivity or lost to the phonons.  

Accounting for the measured temperature dependence of the electrical conductivity and 

assuming the electrical conductivity only depends on local temperature complicates the 

expression slightly to 

 

𝜋2

6
𝑑2𝑇𝑒

2

𝑑𝑥2 −
𝜋2𝑇𝑒

3𝑟
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(
𝑑𝑇𝑒

𝑑𝑥
)
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𝑒𝐸
𝑘𝐵

)
2

+ 𝛤(𝑇𝑒
5 − 𝑇𝑝ℎ

5 ) 
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The resulting model may be solved numerically to find a consistent 𝑇𝑒(𝑥) for a 

given bias current.  Given this, the integrated thermal noise may be computed by adding 

up the contributions of each segment of wire: 𝑆𝑉 = ∫4𝑘𝐵𝑟(𝑇𝑒(𝑥))𝑇𝑒(𝑥)𝑑𝑥, where 𝑟 is 

the local resistance per unit length.   

Figure 6-10(A) shows the measured voltage noise vs. bias current data at 3 K, 5 

K, and 7 K for a 30 μm long YbRh2Si2 wire of comparable width to the short nanowires, 

fabricated through the same process. For a long nanowire with a length much longer than 

the electron-phonon scattering length, thermal transport is dominated by electron-phonon 

coupling. Following the method of Henny et al. in Ref [72], we numerically solved the 

equation (𝑒𝐸(𝑥)
𝑘𝐵

)
2
= 𝛤(𝑇𝑒(𝑥)5 − 𝑇𝑝ℎ

5 ). At each temperature the data can be fit extremely 

well with a single 𝛤, the values of which are 9 × 109 K-3m-2, 9.5 × 109 K-3m-2, and 10 × 
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109 K-3m-2, for temperatures 3 K, 5 K, and 7 K respectively.  These values are of the same 

order as the reported coupling for gold, 5 × 109 K-3m-2.   

 

 

Figure 6-10. Inferring the electron-phonon coupling. (A) Voltage noise as a function 

of bias current in a 30 μm long YbRh2Si2 wire, of comparable width to the nanowires 

used in the main experiment.  The dashed curves are fits to the model mentioned 

above, where the fitted electron-phonon coupling parameters are 𝛤 = 9 × 109 K-3m-2, 

9.5 × 109 K-3m-2, and 10 × 109 K-3m-2 at T=3 K, 5 K, and 7 K, respectively.    (B)  Using 

the temperature profiles computed from the model with those values of 𝛤, we 

compare the computed 𝑑𝑉
𝑑𝐼

 as a function of bias (dashed lines) with the measured 

data (solid lines), showing good qualitative agreement while implying some 

intrinsic non-Ohmic response in the material.  The inferred 𝛤 values are of the same 

order as in gold, thus demonstrating that there is no greatly enhanced electron-

phonon coupling in YbRh2Si2. 

 

3 K
5 K

7 K

7 K

5 K

3 K

A B
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With these measured values for 𝛤, we can estimate the phonon contribution in the short 

nanowire. We reach conclusion that electron-phonon coupling cannot be responsible for 

the observed shot noise suppression using two ways. 

 

First, we consider what the expected noise would be if there were strong electron-electron 

scattering (resulting in an effective 𝑇𝑒(𝑥) ) as well as electron-phonon scattering 

consistent with the experimentally determined value for 𝛤 in Yb2Rh2Si2 from Figure 6-

10.  We compute the temperature profile 𝑇𝑒(𝑥) expected within the wire at 3 K and 𝐼 ≈

113𝜇𝐴, and then compute the expected noise from 𝑆𝑉 = ∫ 4𝑘𝐵𝑟(𝑇𝑒(𝑥))𝑇𝑒(𝑥)𝑑𝑥 and the 

expected non-Ohmic response due to that 𝑇𝑒(𝑥). The results are shown in Figiure 6-

11(A)-(C). Using the measured 𝛤 in Yb2Rh2Si2, the predicted noise and the predicted 

non-Ohmic response are much greater than what is actually seen in the experiments.  The 

measured noise response is not compatible with the experimentally determined electron-

phonon coupling.   

 In our second proof-by-contradiction approach (Figure 6-11 (D)), we work 

backward from the measured noise to estimate what electron-phonon coupling parameter 

would be necessary to match the experimental noise data at each current within the 

quasiparticle heating model.  For the suppressed noise to result from electron-phonon 

scattering, 𝛤 in Yb2Rh2Si2 would have to be 3.4 × 1011 K-3m-2, which is about 35 times 

higher than the experimentally measured value.  Again, we find that the measured 
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electron-phonon coupling is incompatible with electron-phonon scattering as the 

mechanism responsible for the suppressed noise in the short nanowires. 

 

Figure 6-11. Simulations showing that the measured electron-phonon coupling 

cannot be the source of noise suppression.  (A) The modeled local electron 

temperature in the wire (calculated from equation is this secton above) if we 

assume electronic heating and use the measured value of the electron-phonon 

coupling for YbRh2Si2 found from the experiments of Figure 6-10 (Γ = 9 × 109 K-3m-

2) at the lowest temperature and largest current.   (B) The calculated differential 

resistance vs. bias (dashed lines) expected from the bias-dependent temperature 

profiles as in (A), which disagree greatly with the measured values (solid lines).  (C) 
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The calculated noise expected from the model (dashed lines), which disagree greatly 

with the measured values (solid points).  This shows that with the measured 

electron-phonon coupling Figure 6-10, in the usual quasiparticle/Fermi Liquid 

treatment, there should be much greater noise than what is seen in the experiment.  

(D)  Achieving the experimentally observed noise suppression in Yb2Rh2Si2 through 

electron-phonon scattering would require an electron-phonon coupling of 

3.4 × 1011 K-3m-2, much larger than the measured value.  Again, this shows that 

electron-phonon coupling cannot be responsible for the observed noise 

suppression. 

 

6.7. Conclusion 

To interpret these results, it is important to consider the nature of quasiparticles in 

terms of the single-particle spectral function and distribution functions.  For a Fermi gas 

(i.e. in the absence of any interaction), the single-particle spectral function 𝐴(𝑘, 𝜖) at a 

given wavevector 𝑘 is a delta function in energy 𝜖  at 𝜖 = 𝐸𝑘 , meaning that a particle 

excitation at (𝑘, 𝐸𝑘) in the zero temperature limit is perfectly well-defined in energy and 

has infinite lifetime with a weight 𝑍 = 1 .  Correspondingly, the particle excitations 

follow the Fermi-Dirac distribution, and the Fermi surface is a perfectly sharp boundary 

at 𝑇 = 0. In a Fermi liquid, the spectral function retains a peak for 𝑘 near the Fermi 

surface, which describes a quasiparticle with a nonzero spectral weight 𝑍 < 1   The 
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distribution function near the Fermi surface is smeared but still has a non-zero 

discontinuity at 𝑇 = 0 [173]. 

 

In the case of the particular type of non-Fermi liquid with a complete destruction 

of quasiparticles, one had 𝑍 = 0 everywhere on the Fermi surface.  With such a complete 

smearing of the Fermi surface, there is no discontinuity in the distribution function even 

at 𝑇 = 0.  In this limit, when driven by a bias that does not greatly perturb the non-FD 

distribution function, there are no granular quasiparticles that carry the electrical current.  

We can then expect a much-reduced shot noise, as we observe in the form of a Fano 

factor that is considerably smaller than not only the strong electron-electron scattering 

expectation 𝐹 = √3 4⁄  but even the weak electron-electron scattering counterpart 𝐹 =

1 3⁄ . We highlight this contrast in Figure 6-12.  For reference, when the electron spectral 

function is entirely featureless, the continuous electron fluid would have no shot noise 

(𝐹 = 0).  We expect our work to motivate future theoretical studies to fill the vacuum of 

model calculations on shot noise in strange metals. 
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Figure 6-12. Fano factors and context for their interpretation.   The main panel 

shows Fano factors found from fitting the data in Figure 6-6 and Figure 6-7, with 

error bars.  In a Fermi liquid, current is carried by individual quasiparticle 

excitations, and the current as a function of time fluctuates with the arrival of each 

discrete transmitted carrier.  Carriers scatter diffusively through static disorder 

(brown dots).  When electron-electron scattering is weak (sample length 𝐿 < 𝐿𝑒𝑒), 

the expected Fano factor is 𝐹 = 1/3 (green line), while electron-phonon coupling 

can suppress this at higher temperatures.  When electron-electron scattering is 

strong (𝐿 > 𝐿𝑒𝑒), the expected Fano factor is 𝐹 = √3/4  (blue line).  In a system 

without well-defined quasiparticles, charge transport is more continuous, leading to 

suppressed current fluctuations; in the extreme limit that electronic excitations are 

entirely non-dispersive, the Fano factor is expected to vanish (red line). 

 

Shot noise is a probe that gives unique access to the discrete character of charge 

carriers.  The suppressed noise shown in Figure 6-6 (A) and summarized in Figure 6-12 is 

clear evidence that current in this strange metal system is not governed by the transport of 

individual, granular quasiparticles.  A Fano factor of zero is expected only for the most 

extreme case of a non-Fermi liquid, one that has a completely flat spectral function. A 

non-Fermi liquid that still has residual dispersive spectral features, in spite of a vanishing 

quasiparticle weight Z, and would thus lead to a finite Fano factor. These residual 

dispersive spectral features are naturally expected to somewhat sharpen as T → 0, leading 
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to the rise in 𝐹  as temperature is lowered, but would never reach the 𝐹 = √3/4  

expectation for a strongly correlated Fermi liquid (where Z is finite).   

 

While scattering techniques show incoherent, non-quasiparticle electronic response as a 

diffuse continuum across (𝒌, 𝜖), shot noise specifically targets the current-carrying 

excitations.  The shot noise probes both the equilibrium non-Fermi liquid distribution 

function and its nonequilibrium evolution when perturbed by the difference in source and 

drain chemical potentials.  In Fermi liquids, this approach has given insights into inelastic 

electron-electron scattering and the evolution of the nonequilibrium distribution function.  

This technique will provide crucial experimental constraints on such processes in strange 

metals, physics that has a paucity of theoretical treatment thus far.   Moreover, strange 

metallicity as inferred from the resistivity is observed across many systems with quite 

disparate underlying microscopic physics (2-8, 10, 28).  Shot noise provides an 

opportunity to test the extent to which these apparently similar strange metals can fit 

within a single paradigm. 

6.8. Supplementary information 

6.8.1. Thermal noise correction for Non-linearity in YbRh2Si2 nanowire  

Experimentally, the noise in the YbRh2Si2 nanowires is unequivocally suppressed 

relative to Fermi Liquid expectations.  When attempting to extract an effective Fano 

factor, it is important to consider whether non-Ohmic response could be influencing the 
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analysis. There are a number of approaches that try to address the issue of thermal noise 

in an intrinsically non-Ohmic device (e.g.  [174,175]).  The situation is particularly 

challenging in a mesoscopic device driven out of equilibrium, where it is not generally 

possible to cleanly separate the measured noise into contributions that are purely thermal 

and purely shot noise.   

For a passive device without large reactive contributions, the typical approach in 

assessing the thermal noise is to consider a term with a nonlinear correction: 

 
𝑆𝑉,𝑇ℎ(𝐼) = 4𝑘𝐵𝑇 ((

𝑑𝑉
𝑑𝐼

)
𝐼
+

1
2
𝐼 (

𝑑2𝑉
𝑑𝐼2

)
𝐼
) 
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If we take the conservative approach and assume that all of the observed 

nonlinearity in Figure 6-5 (A) is intrinsic and not related to local electron temperature 

changes, we can analyze the data of Figure 6-6 (A) with this approach, as shown in 

Figure 6-13.  The suppression of the measured noise below the Fermi Liquid expectations 

is unambiguous, as pointed out in the main text, and the difference between the inferred 

Fano factors with and without the nonlinearity correction are small. 
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Figure 6-13. Noise vs. bias current with two different analyses (curves shifted 

vertically for clarity).  The noise data are identical between the two panels and 

clearly fall far below the 𝐹 = 1
3
 Fermi Liquid expectations.  (a) The theory curves in 

this panel including the fits to the data are using the expression from the paper, 

𝑆𝑉 = (𝑑𝑉
𝑑𝐼

)
𝐼

2
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) + (1 − 𝐹)4𝑘𝐵𝑇 (𝑑𝑉

𝑑𝐼
)
𝐼

−1
] − 4𝑘𝐵𝑇 (𝑑𝑉

𝑑𝐼
)
𝐼=0

 .  (b) The 

theory curves in this panel including fits to the data are using an expression based 

on the second-order correction from M. S. Gupta, Proc. IEEE 70, 788-804 (1982), 
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4𝑘𝐵𝑇 (𝑑𝑉
𝑑𝐼

)
𝐼=0

. (c) Comparison of fitted Fano factors from (a) in black and (b) in gray. 

This shows that including a thermal noise correction that assumes an intrinsic non-

Ohmic response  lowers the inferred Fano factors by about 0.01 to 0.02. 

6.8.2. One theoretical model for current fluctuations in a quantum critical 

metal 

One explicit discussion of nonequilibrium noise in a quantum critical metal exists 

in the literature [167,168].  The applicability of the model in question, however, is limited 

and not necessarily well-suited to this experiment.  That model considers an entirely 

different quantum critical metal, one associated with the Bose-Hubbard model of the 

superconductor-insulator transition.  The approach is based on holography and maps 

between the nonequilibrium current fluctuations in the quantum critical metal and 

Hawking radiation within an effective black hole model.  The result is an expression that 

interpolates between Johnson-Nyquist noise at zero bias and shot noise that scales like 

√𝑉 at high bias, 𝑆𝐼 = 4𝑘𝐵 𝑇∗ (𝑑𝑉
𝑑𝐼

)⁄ , where 𝜋𝑘𝐵𝑇∗ = [(𝜋𝑘𝐵𝑇)4 + ℏ2𝑐0
2𝑒2𝐸2]1 4⁄  , 𝑐0 is a 

characteristic velocity, and 𝐸 = 𝑉 𝐿⁄  is the driving electric field along the device.  It is 

worth noting that this model has issues when extrapolated to the zero-temperature limit, 

as the predicted Fano factor diverges like 𝐸−1 2⁄  when approaching zero bias.  

While this model is for an entirely different kind of quantum critical point, for 

illustrative purposes we can apply it to the measured data. Fitting the lowest temperature 

data best constrains c0.  We fit the 3 K noise as a function of bias current with this 
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expression using 𝑐0 as the only adjustable parameter.  Comparing (Figure 6-14) with the 

measured data at higher temperatures and no further adjustable parameters shows good 

agreement for c0 = 6.6 × 105 m/s, though this may be fortuitous.  It is difficult to 

interpret this agreement. 

 

Figure 6-14. Comparison of measured noise with the example holographic 

treatment of noise in the strange metal. 

6.8.3. Shot noise measurement in another batch YbRh2Si2 film 

We performed the same measurements on wires from a newly grown YbRh2Si2 

film. The RIE parameters were adjusted get well defined structures. More details about 

the RIE parameters tuning can be found in Section 8.3. Figure 6-15 below shows the 

SEM image and differential resistance data on the short nanowire. The edge is sharp 
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compared to previous device because we deposit Ti/Au and Cr mask together using e-

beam evaporator so the alignment is better.  

 

Figure 6-15. YbRh2Si2 nanowire device patterened on another film. (A). SEM image 

of nanowire divice connecting two large gold pads. (B). Differential resistance 𝑑𝑉/𝑑𝐼 

as a function of bias current at 10 K, 7 K, 5 K, and 3 K (top to bottom). 

Similar to previous experiments, the first thing we did is to check the basic 

transport properties to check if we ruined the sample, since we used different RIE 

parameters for etching on new batch film. The normalized resistance dependence on 

temperature and in-plane magnetic field is shown in Figure 6-16. We observe that the 

nanowire device (using different RIE parameters) for new film and the original 

unpatterened new film show almost identical normalized resistance depending on 

temperature and in-plane magnetic field. This means that our new etch parameters do not 

damage the film properties and resistance is dominated by the nanowires as expected. 
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Figure 6-16. (A)Normalized resistance as a function of temperature for both the 

unpatterned film and the etched nanowire, showing linear-in-T resistivity in the low 

temperature limit.  (B-E) Normalized resistance as a function of in-plane magnetic 

field for both the unpatterned MBE film and the etched nanowire (B oriented 

transverse to the nanowire) from T = 3 K to 10 K. The nearly identical response 

between nanowire and unpatterned film confirms that patterning did not 

substantially alter the electronic properties of the epitaxial YbRh2Si2 material, and 

that resistance is dominated by the wire. 

We measure the noise signal using same setup before. Because of the smaller 

resistance for the new nanowire device, we increase the maximum current from 113 𝜇A 

to 200 𝜇A. This will increase the maximum voltage noise intensity and 𝑒𝑉/𝑘𝐵𝑇 ratio, to 

reach the region that noise intensity is proportional to the bias. the measured noise 

intensity dependence on current bias from T=3 K to 10 K is shown in Figure 6-17 below. 

Measured noise intensities are shown as orange color error bar, and theoretical shot noise 
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with different Fano factors are plotted as dashed for comparison. The measured noise 

remains much smaller than Fermi liquid nanowire’s 1/3 Fano factor shot noise for whole 

temperature range. 

 

Figure 6-17. (A)-(D) Noise vs. bias current at various temperatures (3 K, 5 K, 7 K, 10 

K), with comparison dashed lines showing expectations for particular Fano factors. 

The orange color error bars are from 15 repeated measurements data and 

connected through straight guide lines. The measured noise remains far below 

theoretical expectations for a diffusive nanowire of a conventional Fermi liquid at all 

temperature. 
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To evaluate the phonon contribution as we did before, we also fabricated a 50 𝜇m 

long YbRh2Si2 wire using same process. Figure 6-18 below shows the SEM image and 

differential resistance data on this long nanowire. 

 

Figure 6-18. YbRh2Si2 50 𝜇m long nanowire device patterened on another film. (A). 

SEM image of nanowire divice connecting two large gold pads. (B). Differential 

resistance 𝑑𝑉/𝑑𝐼 as a function of bias current at 10 K, 7 K, 5 K, and 3 K (top to 

bottom). 

The normalized resistance dependence on temperature on this long nanowire 

looks a little different with what we expect as shown in Figure 6-19. But it still remains 

linear in temperature dependence of resistance at low temperature range, and the 

normalized magnetoresistance at four different temperatures look quite similar. So we 

think we can still use this device to estimate the electron-phonon coupling strength 

parameters as we did before. 



 143 
 

 

Figure 6-19. (A)Normalized resistance as a function of temperature for both the 

unpatterned film and the etched 50 𝜇m long nanowire, showing linear-in-T 

resistivity in the low temperature limit.  (B-E) Normalized resistance as a function of 

in-plane magnetic field for both the unpatterned MBE film and the etched nanowire 

(B oriented transverse to the nanowire) from T = 3 K to 10 K. The nearly identical 

magnetic field response between long nanowire and unpatterned film suggests that 

patterning did not substantially alter the electronic properties of the epitaxial 

YbRh2Si2 material, and that resistance is dominated by the wire. 

Figure 6-20(A) shows the measured voltage noise vs. bias current data at 3 K, 5 

K, and 7 K for this 50 μm long YbRh2Si2 wire, fabricated through the same process. For 

a long nanowire with a length much longer than the electron-phonon scattering length, 

thermal transport is dominated by electron-phonon coupling. Following the method in 

section 6.6, At each temperature the data can be fit well with a single 𝛤 except for 7 K 

because of 1/𝑓 noise at the highest bias, the values of which are 7.5 × 109 K-3m-2, 7.5 × 



 144 
 

109 K-3m-2, and 7 × 109 K-3m-2, for temperatures 3 K, 5 K, and 7 K respectively.  These 

values are close to the reported coupling for gold, 5 × 109 K-3m-2. 

 

Figure 6-20. Inferring the electron-phonon coupling on new film. (A) Voltage noise 

as a function of bias current in a 50 μm long YbRh2Si2 wire, of roughly double width 

to the nanowires used in the main experiment.  The dashed curves are fits to the 

model in secton 6.6, where the fitted electron-phonon coupling parameters are 𝛤 = 

7.5 × 109 K-3m-2, 7.5 × 109 K-3m-2, and 7 × 109 K-3m-2 at T=3 K, 5 K, and 7 K, 

respectively. Inset shows the spectrum at I = 0 𝜇A, 100 𝜇A, and 200 𝜇A. The 

deviation of fitting at high bias for T = 7K is caused by this 1/𝑓 noise.   (B)  Using the 

temperature profiles computed from the model with those values of 𝛤, we compare 

the computed 𝑑𝑉
𝑑𝐼

 as a function of bias (dashed lines) with the measured data (solid 

lines), showing good qualitative agreement while implying some intrinsic non-

Ohmic response in the material.  The inferred 𝛤 values are close to gold, thus 

demonstrating that there is no greatly enhanced electron-phonon coupling in 

YbRh2Si2. 
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Similar with what we did in section 6.6, we used estimated electron-phonon 

coupling strength parameter 𝛤 = 7.5 × 109 K-3m-2 to simulate the noise intensity in short 

nanowire case, as shown in Figure 6-21. We found same result as previous device that the 

real noise intensity is much smaller than simulation, and this means phonon is not the 

main reason to suppress shot noise in YbRh2Si2 nanowire. This results support our 

original conclusion that the suppressed shot noise in YbRh2Si2 indicates the lack of well-

defined quasiparticles. 

 

Figure 6-21. Simulations showing that the measured electron-phonon coupling cannot be 

the source of noise suppression. The calculated noise expected from the model (dashed 

lines), which disagree greatly with the measured values (solid points).  This shows that 

with the measured electron-phonon coupling Figure 6-20, in the usual quasiparticle/Fermi 

Liquid treatment, there should be much greater noise than what is seen in the experiment. 
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Chapter 7 

Future research 

7.1. follow up works 

There are many possible follow up works based on my projects. 

1. For the mott-insulator V2O3, it would be interesting to investigate the noise 

signal in nano devices. In our previous work, we found the percolation 

properties and existence of very fast (ns level) fluctuators. The percolation 

properties comes from the coexistence of metal and insulator phases domains 

during the metal insulator transition [87], and the source of nanosecond 

fluctuators are still unclear. To further understand the dynamic inside the 

metal insulator transition, it is better to measure noise signal in nano devices 

with dimensions comparable or smaller than the single phase domain during 

the transition. The domains sizes can be as large as 1 𝜇𝑚  during metal 

insulator transition based on Ref  [87] and some fabrication processes for 

nanowires are provided in Ref  [176], these make the fabrication of nano 

devices practical. It would be possible to isolate a single fluctuator or few 
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fluctuators using nano devices. If it works, people can vary the size of devices 

and take more measurement to obtain statistic results. 

2. It is probably worth trying same 1/ 𝑓  noise measurement on other mott 

insulator such as NiO, and it would help us to find the common or different 

properties between different mott insulators. 

3. For the shot noise measurements in YbRh2Si2 nanowire, it is worth trying 

same measurements at lower temperatures. Lower temperatures measurements 

allow people to tune the phase of YbRh2Si2 from strange metal to Fermi 

liquid, and direct comparison would be possible. 

4. Shot noise in other heavy fermions nanowires such as Sr3Ru2O7 would be 

interesting. Sr3Ru2O7 can be tuned in and out of strange metal phase by 

applying magnetic field in our PPMS setup, so we can compare the shot noise 

in strange metal phase and Fermi liquid phase directly. It also help us to check 

if the suppressed shot noise is universal in heavy fermions strange metal. 

5. Noise measurements in different structures, such as STM and planar tunnel 

junction, made with YbRh2Si2 might be interesting, although we are still not 

sure whether ‘quasiparticles’ properties vary with devices structure. 

 

7.2. Other research directions 

In our previous work, we found the preformation of electron pairs indicated by 

shot noise in LSCO tunnel junction [45]. It is possible to measure shot noise in the high 

Tc superconductor  nanowires. The noise signal across the Tc could be interesting (would 

be hard to measure voltage noise in superconducting state). To minimize the phonons 

effects, we need to use underdoped or overdoped sample that with Tc as low as possible, 
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such as Tc = 3 K. We might see shot noise intensity higher than Fermi liquid nanowires’ 

case if electrons form pairs.  

We saw spin seebeck effect in paramagnetic insulating state of VO2 at low 

temperatures [177].  It is interesting to see whether an antiferromagnetic insulator V2O3 

has similar properties at low temperature. This experiment is more practical than the 

research ideas mentioned above as we have the materials ready and fabrication processes 

are relatively simple.

In otherwork gw
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Chapter 8 

Appendix 

8.1. Noise probe design 

Voltage fluctuations in noise measurements are very small signal compared to th e 

signal in usual transport measurement. To precisely measure the noise intensity, a 

customized noise probe is required to pick up real signal from device and eliminate 

unwanted noise. The picture of our two noise probes are shown in Figure 8-1. All 

important parts are label by number in the picture, and I will explain some tips in 

following paragraphs.  

 

The probe is inserted into the PPMS, and get good termal contact using a PPMS 

puck stage(13). The copper stage(13) is electrically isolated from other parts of probe by 

very thin tape and thermal grease, to avoid noise in the PPMS’s groud going into voltage 

amplifiers’ ground. All other part are electrically connected as the ground for amplifiers. 
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Probe wires(manually twisted 32 AWG copper wire with insulating coat) and samples are 

always shielded inside to reduce environmental background noise. Since the top part of 

probe is exposed to the air, there is always heat transfering from wires to sample. To 

reduce the direct transfering of heat from wires to athe sample and make the sample 

temperature closer to the big copper parts(9,11), the wires close to the samples are 

designed to attach tightly to the big copper parts(9,11) to let heat on the wire transfer to 

big copper parts(9,11) before reaching the samples. In probe 1, this is done by pressing 

the wire to the copper part (11) using another piece of copper plate, rubber and two 

screws. For probe 2, this is done by wrapping the wires and copper part(9) using 

aluminum foil and Kapton tape, and appling thermal grease between wire and alminum 

foil to increase thermal conductivity.   

It is not very practical to have perfect match between probe length and PPMS 

chamber depth. If the probe is a little longer then PPMS chamber depth, it either cause 

too much strain along the rods and make it bent or even break, or it will cause small 

leakage on the top sealing part, or it will cause the bending of PPMS puck stage(13). If 

the probe is a little shorter than the PPMS chamber depth, there would be no enough 

pressure to make good thermal contact between PPMS puck stage(13) and bottom of 

PPMS chamber. Furthermore, because of thermal expansion across the broad sample 

temperature range, it becomes harder to find the perfect length. To solve this problem, we 

design a spring like structure using rubber inside customized part(2). The natural length 

of probe when the rubber is totally relaxed is a few millimeters longer than PPMS 

chamber depth, and when we load the probe into PPMS, the compressed rubber will 
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provide pressure to guarantee good contact between PPMS puck stage(13) and bottom of 

PPMS chamber, and thus we don’t need to worry about thermal expansion during 

temperature change. 

One key method to reduce environmental noise is using twisted pair wires and 

shielding. In both probes, our twisted wires are capsulated in a conducting shield. For 

probe 1, we used  stainless steel wire shielding mesh(5), and the shield is tightly attached 

to the g10 rod(4). For probe 2, the twisted pair wires are inside the hollow stainless steel 

rod(3). For now, there are 3 twisted pair wire, so 6 wires in total, for both probes. 6 wires 

are enough for most of noise measurement requirements, it is possible to add more wires 

in the future, but it will take effort to rewire everything. 

Another thing that needs care is the vacuum sealing. We drill a hole through the 

vacuum tube fitting end caps(1), to fit through the 14 pin adapter(8).  We add a o-ring 

between adapter and cap for vacuum seal. However, because our adapters are not 

designed for high vacuum applications, there is leakage at the pins’ positions. To solve 

this issue, we used solder to cover all unused pins and used stycast to cover the gaps 

between pins and surrounding plastic part. 

Our probe 1 follows similar design with our previous probe used in Ref [45], it 

works well with a customized sample box(12), but it can only hold sample vertically, and 

applied magnetic field is always in-plane. Probe 2 solves this issue using more 

complicated bottom part design. It is compatible with PPMS standard sample holder(10) 

and it can hold the sample chips both vertically and horizontally. Another advantage of 

our probe 2 is that the wire connection at bottom is less likely to break compared to probe 
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1. Every time when we load/unload sample using probe 1, we need to connect/disconnect 

the sample box(12) from the socket plug-in adapters, and the wires connecting to the 

socket plug would be bent and might be broken. 

 

 

Figure 8-1. Two customized noise probes. (1) vacuum tube fitting end caps made 

with either stainless steel or aluminum, with hole in middle for adapters(8), (2) 
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customized part connecting adapters(8) and g10 rod(4) or hollow stainless steel 

rod(3). (3). hollow stainless steel rod with thin wall for probe 1. (4) g10 rod for 

probe 2. (5) stainless steel wire shielding mesh covering twisted wires. (6) 

customized part connecting main rod and two short stainless steel rods. (7) two 

short stainless steel rods connecting part(6) and big copper part(9,11). (8) 14 pins 

adapter for wire connections. (9) customized copper structure for sample holder of 

probe 2. (10) standard Quantum Design PPMS chip carrier. (11) customized copper 

structure for sample holder of probe 1. (12) customized sample box for probe 1. 

(13) PPMS puck stage for thermal contact with bottom. 

Some parts of customized components are shown in the following Figures with 

scale in unit inch. 
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Figure 8-2. muti views of part(2): customized part connecting adapters(8) and g10 rod(4) 

or hollow stainless steel rod(3). 

 

Figure 8-3. multi views of part(6): customized part connecting main rod and two 

short stainless steel rods. 

 

Figure 8-4. multi views of part(7): two short stainless steel rods connecting part(6) 

and big copper part(9,11). 
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Figure 8-5. multi views of part(9): customized copper structure for sample holder of 

probe 2 and each individual smaller components. 
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8.2. Tips for getting better noise spectra 

1. Always be careful about the noise from ground, especially PPMS ground. We 

found that some instruments generate large noise on their ground, and 

connecting their ground to amplifiers’ ground would pick up large background 

noise. The most effective way is to isolate the amplifiers’ input ground with 

PPMS ground. 

2. Twisted pair wire is necessary for noise measurement. Any loop between the 

noise measurement wire can pick up environmental noise, and this noise 

might change with time and cause large variations of measured signal. 

3. Customized noise detector could help to find noisy source. We made coil(10-

20 1 inch diameters loops) and attach it to the end of a rod, we directly read 

noise spectrum from the coil to find the noisy source in lab. We did find a 

UPS in our lab generating a few strong noise peaks while working when we 

move the coil close to the UPS. 

4. Use two twisted pair wires to connect noise from samples. When sample 

resistance and voltage signal are small, we need to consider the thermal noise 

from the probe wires. One way to solve this problem is to use two twisted pair 

wires, each connects the sample and one amplifiers chain, the thermal noise 

from two twisted probe wires will be eliminated by cross-spectrum because 

they are uncorrelated to each other. 

5. If there is still noise background, try to remove this by measuring noise 

increase/decrease. If the background noise is bias independent, we can 

measure the noise increase at given bias compared to zero bias. If the 

background is temperature independent, we can measure thermal noise at 

different temperature to find the background noise. 

6. Shielding is important. We recommend checking ground shielding on the 

probe to the amplifiers’ input ground, and make sure it is connected. 

Disconnection of ground shield might increase background noise based on our 

experience. 
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7. Some noise peaks at 60×n Hz where n=1,2,3…. Is related to the US power 

frequency, and are hard to remove. One practical method is to remove the data 

at these frequencies and even 60×n±5 Hz. 

8. The system also picks up the thermal noise from the current limiting resistors, 

and the value is related to the sample resistance. When sample resistance is 

much smaller than the currently resistor, we don’t need to worry about this. 

However, if the sample resistance is not much smaller than current limiting 

resistor, we need to calculate the contribution from thermal noise of current 

limiting resistors. One of the solutions is to put the current limiting resistors 

together with sample, so the temperature of resistors would be much lower. 

8.3. Reactive ion etch parameters tuning 

The performance of RIE vary with film and working conditions of RIE 

instruments. We found that the parameters we used in 6.1.2 does not work well on the 

new YbRh2Si2 film, it is either because the film property changed or the maintenance of 

RIE instrument changed the working conditions. We adjust the parameters including 

working pressure, RF power, ICP power and time duration. Here I explain how each 

parameter change the etching result, and final parameters we used for etching the 

nanowire in section 6.8.3. 

Pressure is a very important parameter that decide the mean free path of Ar ion. 

Lower pressure means lower collision chance between Ar ion before hitting the sample, 

and this means the Ar ion will have relatively high energy and the etching process is 

more anisotropic. However, if the pressure is too low, the instrument will not be able to 

generate plasma. For our instrument, the lower limit is around 1.7 mtorr and we decided 

to use 2 mtorr for our experiment. 
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RF power for our instrument is used to generate DC voltage bias on sample and 

accelerate the Ar ion. However, the voltage generated on sample is also related to the 

plasma density, so for the parameters tuning process, we always adjust ICP power first, 

then adjust the RF power to make the DC bias constant(around 400V). 

ICP power is mainly used to generate Ar plasma and higher plasma density leads 

to higher etching rate, however, it can affect how anisotropic the etching is. As shown in 

Figure 6-1, ICP power can generate fast switching magnetic field, and the switching field 

will generate circular electric field in the chamber. The accelerated Ar ion will suffer the 

force in horizontal direction and the etching process would be isotropic. We found under 

etch issue when we fabricate nanowire on new film after RIE instrument maintenance.   

Here I show the etching results on Si using two different parameters setting. 

Parameter 1: RF power 190 W, ICP power 600 W, Pressure 2 mtorr, Flow 20 cc, 

temperature 13 degree, time 2 minutes. Parameter 2: RF power 120 W, ICP power 100 

W, Pressure 2 mtorr, Flow 20 cc, temperature 13 degree, time 12 minutes. The etching 

result are shown in Figure 8-6. It is clear that the etching using parameter 2 is more 

anisotropic. And we decided to use to fabricate the nanowires on new film in section 

6.8.3. 
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Figure 8-6. RIE etching comparison using parameter 1(A) and parameter 2(B) using 

Cr as hard mask and removed by Cr etchant. 

The etching rate use also recalculated using parameter 2 and etching for 6 

minutes. The results are shown in Figure 8-7. The etching rate is around 33 nm for 6 

minutes, to make sure etching away exposed YbRh2Si2, we increase the etching duration 

to 15 minutes when fabricating the nanowire device in section 6.8.3. 
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Figure 8-7. RIE etching test using new parameters on new film. (A) etched strip 

shape imaged by SEM. (B) AFM image across the edge showing etching rate around 

33 nm for 6 minutes. 

 

 


