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ABSTRACT 
 

Noise Processes in Atomic-Scale Junctions and Two-Dimensional 
Topological Insulators 

 
by 

 
Loah Ambrose Stevens 

 

Standard transport measurements, focusing on the first moment of the current, are crucial 

for understanding the behavior of a system as a function of factors such as applied voltage or 

current, temperature, or external fields.  An even more detailed picture may be procured from the 

second moment of the current, the electronic noise.  While the conductance derived from the first 

moment provides the average state of the system, the electronic noise describes how quantities 

such as current, voltage, or resistance fluctuate about their average values.  These fluctuations 

respond to a variety of factors within different systems and can thus reveal information not 

evident by transport measurements alone.  In this work, we employ noise, particularly shot noise, 

to study the behavior of atomic-scale gold junctions and two-dimensional topological insulators.   

Chapter 1 provides an introduction to quantum transport and examines how the concept of 

conductance evolves as the system size decreases from the macroscopic level to the few-channel 

limit.  Chapter 2 describes the basics of electronic noise, specifically Johnson-Nyquist thermal 

noise, 1/f or flicker noise, and shot noise.  This chapter also details the expected behavior of shot 

noise as relates to bias, temperature, sample size, and interaction effects.  Chapter 3 introduces 

two-dimensional topological insulators (2DTIs), beginning with the quantum Hall effect and 

building to the theory of quantum spin Hall insulators.  Chapter 4 outlines the methods used for 
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the noise studies of the following chapters.  Chapter 5 describes a study of shot noise in STM-

style gold junctions.  Shot noise was found to obey the finite temperature Landauer-Büttiker 

model of noise at low applied biases, but at high biases, the derived Fano factors were enhanced, 

which was attributed to either a bias-dependent channel-mixing mechanism or interactions 

between the conduction electrons and nonequilibrium phonon populations.  Chapter 6 describes 

two studies of noise processes in InAs/GaSb quantum wells (QWs).  In the first, RF noise 

measurements of silicon-doped InAs/GaSb bar structures revealed that the differential current 

noise decreases with increasing bias up to some finite bias, above which it increases linearly with 

increasing bias as expected.  The nonmonotonic trend was suppressed by perpendicular magnetic 

field, increased temperatures, and applied gate voltage, leading to the belief that the trend was 

caused by contributions by generation-recombination noise.  The second study involved both low 

and high frequency noise measurements in InAs/Ga0.68In0.32Sb QW Corbino structures and aimed 

to investigate the noise properties of the 2D bulk and the device contacts.  In both frequency 

ranges, at high temperatures and positive gate voltages, when the 2D bulk is conductive, the 

measured noise is essentially flat with increasing bias, but as temperature is reduced and the bulk 

is gapped out, shot noise becomes detectable.  The measured noise is much smaller and with 

broader curvature about zero bias than expected, which can be explained by a model in which the 

bulk and the contacts contribute to the thermal noise, but only the contacts produce shot noise.  

This model produces reasonable contact resistances and accurately portrays the zero bias 

curvature, but at the cost of anomalously large Fano factors.  The large Fano factors may be due 

to either contributions to the shot noise by the bulk that are not included in the model or 

potentially by a mechanism of positive feedback between the conduction electrons and the 

buildup of space charge near one of the contacts.  Future studies are proposed for using noise to 
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probe the edge states in InAs/GaSb 2DTIs.     
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Chapter 1 

Quantum Transport 

Much of the work of this thesis examines systems in which the electrical transport is 

carried out by a limited number of quantum conduction channels.  In this chapter, we introduce 

how transport and the notion of conductance or resistance change in going from the macroscale 

to the quantum coherent limit.  Beginning with the basics of the macroscopic model, we then 

consider the limit of coherent, ballistic transport and introduce the Landauer-Büttiker model and 

the concept of conductance quantization. 

 

1.1  Conduction at the Macroscale 

Fundamental to introductory explanations of electrical conduction in bulk systems is 

Ohm’s Law1: the current (I) through a resistor is proportional to the voltage difference (DV) 

across it, most commonly recognized as 

∆' = )* (1.1) 

where R is the resistance.  In terms of conductance, G, Ohm’s law implies 

+ = 	 -.
/

 (1.2) 

where s is the electrical conductivity of the material, and W and L give the width and length of 

the sample.  Therefore, conductance decreases with increasing length and increases with 

increasing width of a sample.   

Normalizing Equation 1.1 for device geometry, we find 

0 = 	12 (1.3) 
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where j is the current density, E is the electric field.  Conductivity is an inherent property of a 

material, independent of an individual sample size or geometry.  To understand its origin, 

consider the charge carriers in a material, i.e. electrons in a metal, to be a classical, 

noninteracting gas, an approach first put forth by Paul Drude in 19002.  Assume the electrons are 

all moving at some nominal speed v, with random direction such that their average velocity is 

zero.  If the electrons are assumed to not interact with each other, the only collisions will be with 

stationary defects in the material.  On average, an electron will elastically scatter off a defect on 

a timescale of t, meaning the average distance travelled by an electron before encountering a 

defect is l= vt, which is known as the elastic mean free path.  Looking across the entire length of 

the sample, the motion of the electrons is diffusive and each individual electron essentially 

performs a random walk. 

 If an external electric field E or magnetic field B is applied across the material, the 

electrons will respond to the field in between scattering events according to the Lorentz force 

3 = 4(2 + 7 × 9) (1.4) 

For a given electric field E, the result is a net drift velocity of the electrons 

7; =
<2

=
> (1.5) 

where q is the electron charge, and m is its mass.  Current density is then  

0 = 	?@;47; = 	
ABC<#D

=
2 (1.6) 

where n3d is the 3d electron density.  One can then define the Drude conductivity as  

1 = 	 ABC<
#D

=
. (1.7) 
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1.2  Bulk Conduction in Real Systems 

 This deliberately simple, classical picture actually often works well in real materials, 

even though we now know that electrons are primarily governed by quantum mechanics.  That 

is, in real metals or doped semiconductors, single electron states are actually described by 

wavefunctions that reflect the periodic environment of the crystal lattice.   

 

1.2.1  Bloch States 

One of the most successful models of these wavefunctions is the Bloch theorem of the 

allowed electronic states in a periodic lattice.  For a particular lattice structure with spatially 

periodic potential (Figure 1.1a),3 V(r + R) = V(r), we define a translation operator 

EFG(H) = G(H + F). (1.8) 

Let y(r) be some solution to the time-independent Schrödinger equation, Hy(r) = Ey(r).  Due to 

the periodicity of the lattice, this translation operator commutes with the Hamiltonian, meaning 

y(r) can also be an eigenstate of the translation operator 

EFJ(H) = K(F)J(H),  (1.9) 

where c(R) is the eigenvalue of the translation operator.  Two translations must commute 

K(F + FL) = K(F)K(FL) = K(FL)K(F). (1.10) 

Translation must also preserve the normalization of the wavefunction, which implies c(R) must 

be some unit-magnitude complex number that carries a phase such that translations add, 

K(F) = MNO∙F,  (1.11) 

where k is some vector defined in terms of the reciprocal lattice, the Fourier transform of the 

real-space lattice that defines a complementary momentum-space.  The momentum-space vector 
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is defined in terms of the primitive reciprocal lattice vectors, bi, as O = QRSR + Q!S! + Q@S@.  

The allowed values of xi are set by the boundary conditions on the wavefunction, so that 

EFJ(H) = J(H + F) = MNO∙FJ(H). (1.12) 

Equation 1.12 is Bloch’s theorem, which reflects the constraints on the single-particle states in a 

periodic potential.   

 If we define some function TO(H) ≡ MVNO∙HJ(H), we find it has the same periodicity of the 

lattice: 

TO(H + F) = MVNO∙(HWF)J(H + F) 

    = MVNO∙HJ(H) 

  = TO(H). (1.13) 

If uk(r) is a function that is strictly periodic in real space with the same periodicity as the lattice, 

then a single-particle wavefunction guaranteed to satisfy Bloch’s theorem is given by 

J(H) = MNO∙HTO(H). (1.14) 

This is known as a Bloch state (Figure 1.1a), a plane wave modulated by some function whose 

periodicity strictly matches that of the lattice.  It is important to note that although Bloch states 

are still labelled by the parameter k, this no longer directly corresponds to momentum as in the 

case of free electrons.  The form of Bloch states holds even when the periodic potentials are not 

weak.  These states are referred to as extended states, meaning they extend throughout the lattice 

in real space, in contrast to the electronic orbitals of a deeply-bound lattice atom, which are 

localized states.  Scattering events can then be defined in terms of the Bloch states as impurities 

or defects disrupting the periodicity of the Bloch state such that is no longer a fully extended 

state, but rather has some finite lifetime.  An elastic scattering event causes a shift from one 

value of k to another at the same energy. 
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 We now impose boundary conditions on the wavefunction, namely the Born-von Karman 

boundary conditions, J(H + XNYN) = J(H), in other words the wavefunction must be periodic 

after a certain number of lattice sites, where ai are the primitive lattice vectors.  Then Bloch’s 

theorem implies 

MNZ[O∙Y[ = M!\NZ[][ = 1, (1.15) 

where we have used the definition of k in terms of the reciprocal lattice vectors and taken 

advantage of the orthogonality relationship between ai and bi.  Therefore the xi are given by 

QN =
_[
Z[
, aN = 1,2,3…XN, (1.16) 

and the allowed values of k are 

O = ∑ _[
Z[
SN

@
NfR . (1.17) 

Therefore, for a lattice with N = N1N2N3 sites, there are N allowed values for k that fulfill the 

boundary conditions.  In k-space, the allowed volume per single-particle state is g!\
/
h
;

, where L 

is the length of the lattice and d indicates the dimensionality.  If we look at the Brillouin zone of 

the lattice, a region in k-space defined by a set of points that are closer to the origin than to any 

other reciprocal lattice points, we find there are exactly N allowed k values.  For each of these k 

values there are multiple solutions to the single-particle Schrödinger equation with different 

corresponding energy eigenvalues, numbered by what is known as a band index.  Beyond the 

first Brillouin zone, any single-particle state confined by the set boundary conditions exactly 

corresponds to a state within the first Brillouin zone, just with a different band index (Figure 

1.1b).   
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Figure 1.1: [Adapted from Ref. 3] a) Top: an example of a periodic potential (in 1D). Bottom: 

The single-particle states for electrons in a periodic lattice are described as Bloch states, plane 

waves modulated by the periodicity of the lattice. b) Left: Energy as a function of wavevector for 

a free electron. Right: In contrast, when the electron is subject to the constraints of a lattice, the 

allowed energies form specific bands within the Brillouin zone. 

 

 Energy is periodic in k-space: iA(O + j) = iA(O), where G is a reciprocal lattice vector.  

For each n, the energies of all single-particle states defined by the allowed values of k are said to 

be within a particular band, and the range in energy covered by the states in the band is the band 

width.   

 

 

U, potential energy 

I 

p, probability density 

eling wave 
x 

Figure 3 (a) Variation of potential energy of a conduction electron in the field of the ion cores 
of a linear lattice. (b) Distribution of probability density p in the lattice for I$(-)I2 a sinZ m l a ;  
I$(+)I2 = cosZ m l a ;  and for a traveling wave. The wavefunction $(+) piles up electronic charge 
on the cores of the positive ions, thereby lowering the potential energy in comparison with the 
average potential energy seen by a traveling wave. The wavefnnction $(-) piles up charge in 
the region between the ions, thereby raising the potential energy in comparison with that seen by 
a traveling wave. This figure is the key to understanding the origin of the energy gap. 

Figure 3a pictures the variation of the electrostatic potential energy of a 
conduction electron in the field of the positive ion cores. The ion cores bear a 
net positive charge because the atoms are ionized in the metal, with the va- 
lence electrons taken off to form the conduction band. The potential energy of 
an electron in the field of a positive ion is negative, so that the force between 
them is attractive. 

For the other standing wave $(- ) the probability density is 

which concentrates electrons away from the ion cores. In Fig. 3b we show 
the electron concentration for the standing waves $(+), $(-), and for a travel- 
ing wave. 

When we calculate the average or expectation values of the potential 
energy over these three charge distributions, we find that the potential energy 
of p ( + )  is lower than that of the traveling wave, whereas the potential energy of 
p ( - )  is higher than the traveling wave. We have an energy gap of width E,  if 

crystals respond to applied fields as if endowed with negative or positive 
charges, -e or +e ,  and herein lies the explanation of the negative and positive 
values of the Hall coefficient. 

NEARLY FREE ELECTRON MODEL 

On the free electron model the allowed energy values are distributed es- 
sentially continuously from zero to infinity. We saw in Chapter 6 that 

where, for periodic boundary conditions over a cube of side L, 

The free electron wavefunctions are of the form 

they represent running waves and carry momentum p = fik. 
The band structure of a crystal can often be explained by the nearly free 

electron model for which the band electrons are treated as perturbed only 
weakly by the periodic potential of the ion cores. This model answers almost 
all the qualitative questions about the behavior of electrons in metals. 

We know that Bragg reflection is a characteristic feature of wave propaga- 
tion in crystals. Bragg reflection of electron waves in crystals is the cause of 
energy gaps. (At Bragg reflection wavelike solutions of the Schrodinger equa- 
tion do not exist, as in Fig. 2 . )  These energy gaps are of decisive significance in 
determining whether a solid is an insulator or a conductor. 

We explain physically the origin of energy gaps in the simple problem of a 
linear solid of lattice constant a. The low energy portions of the band structure 

- 
Forbidden band 1% 

k 
"7 

k 

Figure 2 (a) Plot of energy E versus wavevector k for a free electron. (b) Plot of energy versus 
wavevector for an electron in a monatomic linear lattice of lattice constant a. The energy gap E, 
shown is associated with the first Bragg reflection at k = ? d a ;  other gaps are found at higher 
energies at k n d a ,  for integral values of n. 

a

b
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1.2.2  Band Structure and Conduction 

 The details of the allowed single-particle states, known as the band structure, vary 

drastically from a metal to a semiconductor to an insulator, and the electronic properties of a 

material result from its band structure.  A metal is defined as a material whose resistivity 

decreases with decreasing temperature.  Figure 1.24 shows typical band structures for a metal at 

zero (Figure 1.2a) and finite (Figure 1.2b) temperature.  At T = 0, there is a well-defined Fermi 

energy that divides the filled states from the empty ones.  For T > 0, electrons near the Fermi 

level can be promoted into empty states above the Fermi energy, leaving behind newly empty 

states called holes.  In metals, there are many available states near the Fermi energy, such that 

electronic excitations can be made with low energetic cost, leading to electronic conduction. 

 In the limit that the temperature is low relative to the Fermi energy (chemical potential) 

scale of the electrons, it is valid to consider the single-particle states as full up to within kBT of 

the Fermi energy, where kB = 1.3806 ´ 10-23 JK-1 is the Boltzmann constant.  This defines the 

Fermi energy as well as the Fermi surface in k-space.  In the limit of a bulk metal, the spacing 

between single-particle states due to the boundary conditions is negligible.  For example, 

consider a 1 cm3 block of sodium, an alkali metal.  The spacing between the single-particle states 

is given by 

∆= R

kBClm/C
 (1.18) 

where n3d is the 3d density of states, EF is the Fermi energy, and Ld is the volume.  For sodium, 

n3d = 7.6 ´ 1046 J-1m-3, and EF = 3.2 eV = 5.2 ´ 10-19 J, so the spacing for the 1 cm3 is D = 1.3 ´ 

10-41 J = 8.1 ´ 10-23 eV, which is much smaller than kBT for all experimentally accessible 

temperatures.  For reference, room temperature corresponds to roughly 26 meV.  This means the 
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band is essentially continuous, and the energy cost of creating an electron-hole excitation can be 

arbitrarily small.   

  In real metals, both electron-like and hole-like excitations are quasiparticles, a term used 

to describe low energy (in relation to EF) excitations with well-defined quantum numbers 

(including spin, charge, band index, k).  Quasiparticles are not exact eigenstates of the full many-

body Hamiltonian; each quasiparticle state has some finite lifetime t, and therefore has some 

nonzero uncertainty in energy, Γ~ ℏ

D
, where ℏ = q

!\
 = 1.0545 ´ 10-34 Js is the reduced Planck’s 

constant.  For the quasiparticle model to be a valid description of the low energy excitations, the 

energetic cost of the excitation must exceed G.  In thermal equilibrium, this equates to Γ ≪ stE. 

 In 1957, Lev Landau5 demonstrated that within some constraints, the ground state of the 

interacting many-electron system is still very similar to the non-interacting case.  Namely, there 

is a Fermi sea of filled states separated from empty states by a Fermi surface.  Additionally, the 

low energy excitations are shown to have properties very similar to those of noninteracting 

quasiparticles and the energy uncertainty-lifetime relationship holds as T® 0 if t -1 is dominated 

by electron-electron interactions.  This system is called a Fermi liquid (as opposed to the 

noninteracting Fermi gas).  The Fermi liquid model is the standard for describing metals.6,7  The 

effects of interactions can be added through a small number of Fermi liquid parameters.  The 

low-energy excitation quasiparticle is not simply a solitary electron elevated above the Fermi 

energy; it also incorporates the collective response from all other electrons, which slightly 

modifies its properties. 
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Figure 1.2: [Adapted from Ref. 4] a) Band structure of a metal at T=0.  Filled states are in blue.  

The Fermi energy EF separates the filled states from the empty ones.  Conventional metals can 

arise from either partially filled bands (left) or overlapping bands (right).  b)  At finite 

temperature, electrons near the Fermi level can be excited with little energy cost, leading to 

metallic conduction. 

 

 Under the standard Bloch wave picture, the energy in the conduction or valence band 

depends on k.  It is often valid to expand this dependence in terms of powers of k, and when the 

primary dependence is quadratic, the coefficient of the k2 term defines the effective mass 

i(O) = us! ≡ ℏ#

!=∗ s
!.  (1.19) 

In general, the effective mass m* can differ strongly from that of a free electron.  In a 

noninteracting picture, m* is determined by the details of the lattice, and there are also Fermi 

liquid corrections to the effective mass.  In general, but not always, me* > me due to the effective 

dragging along of the additional interactions.  At the Fermi energy, we can define the Fermi 

velocity as the slope of the energy as a function of k at EF,  wx =
ylm
yz

= ℏzm
=∗ .  We can also define 

4.2 Metals 79

E

0 π/a k π/a k

E

EF

EF

E

0 π/a

EF

(a) (b)

Figure 4.1 (a) Schematic band structure for a metal. Energies with filled states
are shaded blue. The Fermi energy divides filled from empty states at T = 0.
Conventional metals can result from partially filled bands (left) or overlapping
bands (right). (b) Low energy excitations of a metal are (quasi)particles and holes.
In a macroscopic metal, the number of states available near the Fermi energy is
large, and electronic excitations may be made with little energetic cost, leading
eventually to metallic conduction.

properties very similar to those of the free electron gas described in Chapter 3, as
described below.

4.2.1 Ground state and excitations

The electronic properties of metals result from their band structure, which gener-
ally resembles that shown in Fig. 4.1. Above filled valence bands, there is a partially
filled conduction band. At T = 0, there is a well defined Fermi energy separating
filled single-particle states from empty ones. When T > 0, some of the electrons
are promoted from filled states to empty ones above EF; these are often called “par-
ticles”, and the empty states left behind are “holes”. In the limit of a bulk material,
the single-particle level spacing due to confinement is negligible (that is, the band
is effectively continuous). That means that the energetic cost of creating a particle-
hole excitation can be arbitrarily small. Such excitations are said to be gapless. We
shall see that it is this characteristic that leads to metallic electrical conductivity.

Strictly speaking, the excitations (both electron- and hole-like) in real metals are
quasiparticles, a term used to refer to low energy (compared to EF) excitations
with well defined quantum numbers (in this case, spin, charge, band index, and
k, to name a few). Quasiparticles are not exact eigenstates of the full many-body
problem. Each quasiparticle state has a finite lifetime, ⌧ , and therefore a nonzero
uncertainty in energy, � ⇠ h̄/⌧ . For the quasiparticle description to be a sensible
way of characterizing the low energy excitations, the energetic cost of a typical
quasiparticle must exceed �; otherwise it wouldn’t make sense to talk about partic-

a b
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the Fermi momentum, {x = |∗wx = ℏsx.  The Fermi velocity and momentum reflect the 

momentum and group velocity of a fermion at the Fermi surface.  In other words, the conduction 

electrons participating in electrical transport are moving with velocity vF, such that the Fermi 

velocity plays the role of vd above.    

 

1.2.3  The Fermi-Dirac Function 

 When considering how the band structure fills up with electrons at finite temperature at 

equilibrium, it is necessary to use a probabilistic approach.  For fermions (spin-½ particles) we 

use a probability density function called the Fermi-Dirac (FD) distribution to describe the 

probability that a particular energy state E is filled when the system is in equilibrium.  As a 

general approximation, all states above the Fermi energy have a low probability of being filled, 

and all states below the Fermi energy have a high probability of being filled.  By the thermal 

energy scale kBT, the single-particle states much lower than kBT from EF, must remain fully 

occupied since there is insufficient thermal energy to excite them above the Fermi level.  

Therefore, without any external forces, most of the quasiparticle excitations occupy single-

particle states within kBT of the Fermi energy.   

 The Fermi-Dirac distribution, the probability that a given single-particle state with energy 

E and some spin is occupied, is given by 

G(i, }, E) = R

~
�ÄÅÇÉÑÖ

Ü
WR

,  (1.20) 

where µ is the chemical potential.  For E ≪ lm
zÑ

, it is reasonable to approximate } → ix. 

 Figure 1.3a is the Fermi-Dirac distribution as a function of temperature.  In the limit of T 

= 0, it is a step function with the step at E=µ, and the many-particle system is degenerate.  The 

Fermi temperature of most metals is large, and therefore they may be considered degenerate at 
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room temperature.  For example, copper has Ex =
lm
zÑ
= 82000	ä.  This is equivalent to saying 

the Fermi sphere in k-space is sharply bounded due to the step function nature of the FD.   

 

Figure 1.3: a) Fermi-Dirac distribution forµ = 5 eV. For i − } ≫ stE, the distribution is 

essentially a step function.  As  temperature increases (coldest = blue ® hottest = red), the 

distribution smears out as the probability of finding electrons elevated above the Fermi energy 

increases. b) The thermal broadening function, a measure of how quickly the occupancy of the 

single-particle states change with energy.  It is peaked around E = µ and becomes a Dirac delta 

as T ® 0. 

 

As E → ∞, the FD distribution smears out, such that an increasingly significant fraction 

of all the electrons are excited above the Fermi energy.  We can quantify the thermal smearing 

by the thermal broadening function 

gyé
yè
h = −gyé

yl
h = R

%zÑê
sech! g lVè

!zÑê
h.  (1.21) 

As seen in Figure 1.3b, only the occupancy of single-particle states within ~kBT are affected by 

the thermal smearing.  The thermal broadening function is a measure of how rapidly the 
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occupancy of the single-particle states changes with energy.  It is peaked around E = µ, and 

becomes a Dirac delta function in the degenerate limit, T = 0.  

In the framework of these first two sections, conduction is a diffusive process, limited 

only by the population of scatterers, but how does Ohm’s law need to be adjusted to accurately 

describe transport on significantly smaller scales?   

 

1.3  Length Scales and Transport: From Diffusive to Ballistic 

 A diffusive system is one in which the above description of conductivity and electron 

mobility holds; electrons undergo many scattering events as they transverse a material.  As size 

is reduced to the mesoscopic limit, roughly on the order of micrometers down to the nanoscale, 

the physics of electronic transport becomes more complicated.8  Looking at the important length 

scales in a polycrystalline metal for example, consider a long wire of a metal such as gold, with 

length L and diameter d, with ï ≫ ñ.  In the scope of the Drude model, without any inelastic 

processes, the typical distance an electron will travel within the wire before undergoing a 

scattering event is the elastic mean free path, le.  These elastic scattering events are caused by 

any disruption of the periodicity in the stacking of the atoms, such as grain boundaries, vacancies 

in the lattice, or the surface of the metal.  In the absence of any inelastic scattering, the grain size 

of the metal, roughly 20-40 nm for gold, is a good estimate for the elastic mean free path.   

 Leaving behind the strictly classical approach, it is also important to consider the wave-

like nature of the conduction electrons.  The effective wavelength of the electrons involved in 

conduction is the Fermi wavelength, lF.  The Fermi wavelength determines the dimensionality of 

the electronic structure.  For bulk gold, óx ≈ 5	Å.  Like all waves, electronic waves carry some 

phase and interact with each other constructively when in phase or destructively when out of 
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phase.  Inelastic scattering events randomize the phase of the electronic waves on a length scale 

known as the coherence length, Lf.  For bulk gold at room temperature, ïõ~1-2 nm. 

 Consider an electron traveling along the wire for a very short length ú < ïõ, so that it 

encounters no scattering.  This is referred to as ballistic conduction.  In the classical model, 

where resistance arises from scattering events, one might naively think the resistance would drop 

to zero.  Experimentally, however, it has been repeatedly shown that the two-terminal resistance 

never reaches zero, even in a point contact between two metals.  As no scattering occurs within 

the ballistic channel, resistance must arise at the interface of the channel and the electrodes.  

Contact resistance was measured directly in metals in 1969 by Y.V. Sharvin and N.I. Bogatina.9 

To understand how the voltage is dropped in the case of a ballistic channel between two contacts, 

a quantum mechanical approach is necessary.   

 

1.4  The Landauer-Büttiker Model 

To build the quantum mechanical picture of electronic transport in a ballistic conductor, 

imagine a ballistic one-dimensional channel (Figure 1.4a) with length L between left and right 

contacts in the x direction, similar to the model formalized by S. Datta8.  Electrons are free to 

move along L and can occupy a nearly continuous band of states.  The narrow conductor is 

essentially a waveguide, allowing a discrete series of 1d subbands, spaced apart in energy, 

corresponding to different transverse modes that carry current through the channel.  Figure 1.4b 

shows the dispersion relations, the energy of the electron waves as a function of wavenumber, of 

the subbands involved in conduction in the channel.  If the spacing between bands is large 

compared to kBT, where kB is the Boltzmann constant and T is the environmental temperature, 
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then a well-defined number of bands will be occupied.  We can define a function M(E) to count 

the number of occupied modes with energies less than E. 

 

 

Figure 1.4: a) One-dimensional ballistic conductor, capped by two contacts at chemical 

potentials µL and µR.  b) Dispersion curves of right-moving and left-moving electrons. 

 

The left and right contacts have chemical potentials µL and µR, respectively.  With perfect 

transmission from contact to channel and no scattering, right-moving and left-moving electrons 

do not interact and move across the channel with the energy with which they were injected.  

Thus, all right-moving electrons (k > 0) originated at the left contact, and all left-moving 

electrons (k < 0) originated at the right contact.  If a voltage difference, in other words a 
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difference in chemical potentials, is established between the two contacts, the net current is the 

difference in flux between right-moving and left-moving electrons.  The occupation probability 

for the right-moving carriers is given by the Fermi function for the energy, temperature, and 

chemical potential of the left contact f+(E,T,µL).  For electrons as charge carriers, the right-

moving current is the flux per unit time of right movers, summed over all occupied states: 

)W =
V~

/
∑ wûi(s)üGW(i, E, }/)†(i)z  (1.22) 

where wûi(s)ü = 	 R
ℏ

yl

yz
 is the semiclassical velocity of the electrons, derived from the slope of 

the dispersion curve.  In 1d k-space, wavefunctions are spaced by 
!\

/
.  So for each k, there are 

/

!\
 

states to occupy, and the density of states is 
/

!\

;z

;l
.  We can convert to an integral over energy 

using the relation 
yl

yz
ñs → ñi.  The current due to right-moving electrons is then  

)W =
V!~

q
∫ GW(i, E, }/)†(i)ñi
¢
£

 (1.23) 

 

where the factor of 2 arises from the spin-½ degeneracy of the electrons.  Repeating for carriers 

that originated from the right contact, the left-moving current is  

)V =
V!~

q
∫ GV(i, E, }§)†(i)ñi
¢
£

. (1.24) 

The total current I is the difference between the two, I = I+ - I-.  At zero temperature, f+ and f- are 

simple step functions at µL and µR, respectively, so that  

) = 	 V!~
q
(}/ − }§)† = 	 !~

#

q
gè•Vè¶

V~
h† = !~#

q
'†	 (1.25) 

where ' = è•Vè¶
V~

 is the voltage difference between the left and right contacts.  When the 

chemical potential of the left contact is higher than that of the right, more charge carriers are 
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moving right than left, and a net positive current results.  The two-terminal conductance across 

M ballistic channels, known as the Landauer formula,10,11 is given by 

+ = 	 !~
#

q
†. (1.26) 

The major differences between the Landauer formula for conductance and Ohm’s law are 

firstly that there is some inherent resistance that is independent of the sample length, and 

secondly that the conductance does not decrease linearly with the sample width.  Rather, 

conductance depends on the number of transverse channels involved in transport.  The 

remarkable conclusion of the Landauer formula is that if we can tune the number of channels 

through which charge carriers can traverse, we should see the two terminal conductance change 

in discrete steps of the conductance quantum, +£ =
!~#

q
≈ R

R!ß£®	©
.   

Generalizing to the case of multiple channels, the role of scattering in the conductance of 

atomic-scale junctions can be thought of in terms of transmission rates.  The total conduction is 

given by the full Landauer formula 

+ = 	 !~
#

q
∑ >NN  (1.27) 

with ti denoting the transmission probability of each channel involved in the conduction.  

Büttiker later generalized Landauer’s model to include the case of multi-lead geometries and the 

influence of magnetic field.12  The full model is widely known as Landauer-Büttiker formalism.  

The ideal case works under the following assumptions:  1) coherent, ballistic transport, with no 

inelastic scattering events; 2) length scales less than the Fermi wavelength; and 3) zero 

temperature, so that there is no smearing of the Fermi-Dirac distributions. 

Since all modes involved are ballistic, the finite resistance must arise at the interfaces 

between the channel and the contacts.  Though there are only a few transverse modes through the 
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channel, there are many more available modes in each contact.  Only a small number of these are 

able to couple to the modes that propagate through the ballistic channel, however, so all 

wavepackets that couple poorly are reflected back.  In terms of the chemical potentials of each 

piece of the system, we recall that right-moving carriers remain at the chemical potential of the 

left contact, µL, until they reach the right contact, and left-moving carriers remain at the chemical 

potential of the right contact, µR, until they reach the left contact.  The ballistic channel is 

characterized by the average of µL and µR, meaning the applied voltage must be dropped at the 

contacts, where the change in chemical potential occurs.  In real systems, electron-electron 

interactions smear the ideally sharp cutoff between µavg and the contact chemical potentials. 

 

1.5  Experimental evidence of conduction quantization 

Conductance quantization was first demonstrated experimentally in two-dimensional 

electron gases (2DEGs) at GaAs/AlGaAs interfaces in the 1980s.13,14  Figure 1.5, adapted from 

the work by van Wees et al., depicts clear steps in the two-terminal conductance of a 2d electron 

gas in a GaAs/AlGaAs heterostructure as a gate voltage is applied to pinch off the constriction.  

These measurements were performed at very low temperature, 0.6 K, but at higher temperatures, 

the Fermi-Dirac distributions of the electrons broaden, which leads to a smearing of the steps.   
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Figure 1.5: [Adapted from Ref. 13] Two-terminal conductance of GaAs/AlGaAs 2DEG as the 

width is tuned by a top gate.    

 

Steps in conductance have also been observed in atomic-scale metal junctions, even up to 

room temperature since st(E = 300	ä) ≪ ix for most metals.  Mechanical approaches are used 

to observe this phenomenon in metals, either by scanning tunneling microscopy (STM)15–18 or 

mechanical break junctions (MBJ).19–25  In both cases, junctions of just a few or a single atom are 

created by deforming a larger contact.  In STM-style experiments, a metal tip is brought into and 

out of contact with a metal film relatively slowly while measurements of current and 

conductance of the junction capture the transition from macroscopic to atomic-scale connection.  

In MBJ setups, a wider metal junction is stretched to elongate the junction until it is only a few 
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atoms wide.  Once the contact has broken the process is reversed to form a new junction.  In both 

measurement types, many contact breaking-reforming cycles are performed to collect enough 

data for statistical analysis, particularly conductance histograms.  Figure 1.6a and b, adapted 

from References 11 and 17 respectively, depict the processes for STM and MBJ measurements. 

 

Figure 1.6: a) [Adapted from Ref.16] An example of an STM-style measurement.  In this case, a 

mound of gold is deposited onto a gold substrate by the tip by applying a large voltage pulse 

while the tip is within tunneling distance to the substrate, then slowly pulling the tip away.  b) 

[Adapted from Ref. 22] An example of a MBJ setup. A three-point bending mechanism is used to 

stretch the aluminum film that sits on top of a phosphorbronze substrate.  The micrograph shows 

a suspended aluminum microbridge.   

   

Peaks in the conductance histogram and steps in conductance versus time or distance 

denote the most geometrically stable atomic configurations as the junction breaks.  Though 

conductance traces sometimes show steps at non-integer values of the conductance quantum, 
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conductance histograms, as ensemble-averaged data, give a clearer picture of conductance 

quantization behavior, typically displaying peaks at integer values of G0.  Figure 1.7 shows 

examples of conductance steps seen during experiments of MBJs in platinum,19 copper, gold, and 

sodium.26  Figure 1.8 a and b are conductance histograms for gold,25 sodium, and copper.20   

 

Figure 1.7: Examples of conductance steps seen as the width of metallic atomic-scale junctions 

are varied.  X-axis is the piezo voltage (piezo-controller is seen as E in inset of a), controlling 

the strain placed on the junction.  a) [Adapted from Ref. 19] Platinum in vacuum at 1.2K.  b) 

[Adapted from Ref. 26] copper, gold, and sodium at helium temperatures. 
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Figure 1.8: Examples of conductance histograms collected for gold, sodium, and copper. 

a)[Adapted from Ref. 25] Conductance histogram for annealed gold at 4.2K collected using the 

MBJ technique. b)[Adapted from Ref. 20] Conductance histogram for sodium and copper at 

4.2K also collected using the MBJ technique. 

 

These two types of plots alone are not definitive proof of conductance quantization, 

however, only the presence of preferred stable geometries.  Indeed, atomic force microscopy 

(AFM) measurements have shown that abrupt changes in the conductance accompany shifts in 

the atomic arrangement.27  An important study by E. Scheer et al. showed that the number of 

quantum channels involved in transport is directly related to the number of valence electrons of 

the atoms.22,23  Gold, for example, has electron configuration [Xe]4f145d106s1, so a single atom 

chain would contain only one quantum channel.  It was shown by Yanson et al. that Au single-

atom chains display a single nearly fully transparent channel for any chain length.18  For other 

metals, however, such as aluminum, conductance histograms denote only stable atomic 
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configurations.  Conductance histograms of Al show peaks near 1, 2, and 3G0, despite there 

being three valence electrons and thus multiple channels contributing to conductance.28  It is 

therefore necessary to be wary of assuming the number of channels involved in atomic-scale 

transport in metals from conductance histograms alone.   

 

1.6  Back to Ohm’s Law 

 Given the experimental evidence supporting the Landauer-Büttiker model, how do we 

reconcile the quantum transport picture of conductance with the macroscopic Ohm’s law?  To 

begin, we need to determine the transmission probability of a conductor of length L.8  Let the 

conductor be a 1d channel with two barriers, with transmission probabilities T1 and T2, such as a 

constriction in an otherwise 2d electron gas.  To find the transmission probability to pass through 

both barriers, T12, we need to consider all possible paths for an electron, including both the direct 

route and paths with any number of reflections.  For simplicity, only consider the classical 

properties of the electrons and ignore phase differences between paths.  Let R1 and R2 be the 

probabilities of reflection off the first and second barriers, respectively, with R1(2) = 1 – T1(2).  In 

the case of a direct transmission through the channel, T12 = T1T2.  The simplest case of a path 

with reflection is transmission through the first barrier, reflection off the second, reflection off 

the first, then transmission through the second.  This two-bounce scenario has probability 

T1R2R1T2.  Figure 1.9 depicts the first two possible routes and their respective probabilities for an 

electron traversing a conductor with two barriers. 
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Figure 1.9: Possible paths for an electron travelling through a conductor with two barriers with 

transmission probabilities T1 and T2.   

 

Summing over the infinite series all possible bounce possibilities, 

ER! = 	ERE! + ERE!*R*! + ERE!*R
!*!

! + ⋯ =	ERE!
R

RV§´§#
 (1.28) 

In terms of transmission probabilities only we arrive at the expression  

RVế #

ế #
= 	 RVế

ế
+ RVê#

ê#
 (1.29) 

Generalizing to N scatterers in the conductor, each with transmission probability T 

RVê¨
ê¨

= X RVê

ê
 (1.30) 

so 

EZ = 	
ê

Z(RVê)Wê
. (1.31) 

If ≠ = Z

/
 is the linear density of scatterers in the conductor, then 

E(ï) = 	 /Æ
/W/Æ

 (1.32) 

where ï£ ≡
ê

k(RVê)
 is essentially the mean free path, Lm, the average distance an electron travels 

before scattering.  Since the probability of an electron scattering off a single scatterer is 1-T, if 

we assume T~1,  

(1 − E)≠ï=~1 → ï=~
R

k(RVê)
~ï£. (1.33) 
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For a wide conductor with many modes, the number of modes (spaced by 
!\

.
) is proportional to 

the width W, †	~ zm.

!\
.  The conductance can then be written as 

+ = 	M! zm.
q\

E = M! zm.
q\

/Æ
/W/Æ

. (1.34) 

Using the definition of the crystal momentum ℏs, and the 2d density of states ≠!; =
=

\ℏ#
, the 

conductance is 

+ = 	M!≠!;
Øm/Æ
\

.

/W/Æ
 (1.35). 

Recalling the Einstein relation for conductivity in terms of the diffusion constant 1 =

M!≠!;(ix)∞, where D is the diffusion constant, let ∞ =
Øm•Æ
\

, so that 

+ = 	 -.
/W/Æ

 and +VR = 	 /W/Æ
-.

 (1.36) 

which can be separated into a contribution from the contacts,+±VR =
/Æ
-.

, and from the main 

conductor, +≤VR =
/

-.
, which is recognizable as Ohm’s law. 
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Chapter 2 

Electronic Noise 

 While current, voltage, and conductance measurements are crucial to understanding the 

steady-state characteristics of a system, they can fail to give the full picture.  Electronic noise, 

the stochastic fluctuations about the time-averaged value of the voltage, current, or resistance, 

can help fill in the gaps.  For example, if we could have a time stamp of every charge carrier 

traversing a particular system, we would then have a complete picture of how charge transport 

works in that system at a given voltage.  The current is just the first moment of the charge versus 

time distribution, the average charge per time.  The current noise, the mean square fluctuations 

about that average, is the second moment.  Very rarely it is possible to measure higher moments, 

though the theoretical ideal would be full counting statistics, namely either having the entire 

charge v. time statistics, or equivalently, all higher order moments of the current.  Due to its 

dynamic nature and origin from different physical properties, noise is able to carry information 

that cannot be inferred from current or conductance curves.  In general, electronic noise can arise 

from fluctuations in current, voltage, or resistance, but typically measurements focus on current 

<(dI)2> or voltage fluctuations <(dV)2> about the average value.  Noise is most commonly 

referred to in terms of spectral density, the noise power distribution across a given frequency 

range, and is written in units of A2/Hz for current noise and V2/Hz for voltage noise. 

Different types of electronic noise have distinctive origins and frequency responses.  The 

main types of electronic noise relevant to this thesis are Johnson-Nyquist thermal noise29,30 

(Section 2.1), 1/f or flicker noise31,32 (Section 2.2), and shot noise33 (Section 2.3).   
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2.1  Johnson-Nyquist Noise 

 Johnson-Nyquist (J-N) thermal noise was discovered by J.B. Johnson29 and theoretically 

modelled by H. Nyquist30, both in 1928.  Both found that the mean-square voltage fluctuations 

across a device due to thermal agitation of charge carriers are proportional to the resistance and 

the absolute temperature (Figure 2.1).  Johnson-Nyquist noise is observed in all types of resistors 

and is considered an equilibrium noise; in other words, it is present even when the device is in 

equilibrium with no external potential difference. 

 

Figure 2.1: [Adapted from Ref. 29] a) Voltage-squared as a function of resistance for several 

types of conductors. b) Apparent power versus temperature.  Johnson found a linear dependence 

of mean-square voltage fluctuations on both resistance and temperature. 

 

 Nyquist formalized J-N noise using a model of two conductors of equal resistance R and 

held at the same temperature T (Figure 2.2a).30  Thermal fluctuations in the first resistor set up a 

current in the circuit, whose value is given by ) = ≥

!§
, where e is the electromotive force due to 

the fluctuations.  The power dropped over the second conductor due to e is ¥ = )!*.  The second 

law of thermodynamics, that no system can spontaneously produce mechanical work from 
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thermal energy, implies that since the conductors are at the same temperature, power dropped 

over the first conductor due to fluctuations in the second is equal to the power dropped over the 

second.   

 

 

Figure 2.2: [Adapted from Ref. 30] Nyquist’s system of two resistors used to theoretically derive 

Johnson-Nyquist noise.  a) Two resistors of equal resistance R held at the same temperature. The 

power dropped over the second resistor due to voltage fluctuations in the first is 
≥#

%§
, where e is 

the electromotive force due to thermal fluctuations in the first resistor. b) A model of the two 

resistors now separated by a long, non-dissipative transmission line can be used to arrive at the 

voltage noise spectral density µ∂∑ = 4stE*. 
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Now consider the case where the two resistors are connected by a long, non-dissipative 

transmission line of length l (Figure 2.2b) with switches at each point of connection between line 

and conductor.  The line has inductance L and capacitance C per unit of line such that π/

∫
= *, 

implying there is no reflection at the end of the line.  Let the system be in thermal equilibrium, 

such that there is equal power flowing from the first conductor to the second and vice versa.  

Now electrically isolate the transmission line from the two conductors by opening all switches.  

Any energy that was in the transmission line at the moment the switches were opened is now 

trapped, forming standing waves within the line.  The frequency of the natural modes are 
AØ

!ª
, 

where n is an integer, with ? ≥ 2, and v is the velocity of propagation.  Focusing on a frequency 

range of width df, the number of cavity standing modes, or degrees of freedom, within this range 

is 
!ª;é

Ø
, as long as l is long enough to ensure there are many modes.  We can then ascribe the 

average energy per mode as kBT , based on the equipartition theorem for a one-dimensional 

harmonic oscillator.  Note, this assumes kBT is large compared to the mode spacing; modes with 

energies large compared to kBT are not occupied, as in the Planck blackbody spectrum. 

So the total energy in the frequency range df is i = !ª;é

Ø
stE, and since there is no 

reflection, this is equal to the total energy transferred during the transit time t = l/v by both 

conductors.  In terms of power, the average power delivered to the transmission line by each 

conductor within df is ¥ = R

!

l

Ω
= stEñG.  If the total current is given by 

∑

!§
, the original 

expressions for current and power give ¥ = )!*ΩæΩ =
∑#

%§
.  If we then denote the voltage-squared 

within df as V2df, or divide through by df for the voltage noise spectral density, SV, we arrive at 

the well-known expression for Johnson-Nyquist noise 

µ∂∑ = 4stE*, (2.1) 
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or as current noise (converted by dividing through by R2) 

∂ø = 4stE+ (2.2) 

where + = R

§
 is the two-terminal conductance. 

 Johnson-Nyquist noise is a particular example of the fluctuation-dissipation theorem,34,35 

which relates the thermal mean-square fluctuations of some physical variable of a system to the 

dissipative response of the system to perturbations that effect that variable.  Resistance dissipates 

electrical energy by turning it into heat, and the corresponding fluctuation is J-N thermal noise.  

The thermal fluctuations of electrons and atoms within a resistor on a loop of wire cause 

fluctuations in the current around the wire.  J-N noise converts the thermal energy into electrical 

energy, which is the reverse of the resistance. 

J-N noise obeys Equation 2.1 for frequencies G ≪ zÑê

ℏ
, but begins to roll off steeply to 

zero at higher frequencies.  In most measurements, it is safe to assume J-N noise is white, as 

zÑ
ℏ
~ R£Å#B

R£ÅB¿
~10RR or roughly 20 GHz for T~1 K.  It is also worth noting that for a system with 

complex impedance, only the real component Re{Z} contributes to the thermal noise.36  In other 

words, a pure capacitor or inductor does not produce thermal noise.   

 

2.2  1/f Noise 

 1/f noise, also known as flicker noise, was first described by J.B. Johnson in a 1925 report 

on current fluctuations, then referred to as the Schottky effect, in the thermionic emission of 

tungsten filaments (Figure 2.3a).37  Though in this first account, Johnson merely noted that the 

fluctuations were up to 100 times larger than expected at low frequencies, he later described the 

inverse dependence on frequency in a letter to Nature in 1927.38  1/f noise is ubiquitous, 
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appearing in completely unrelated systems, from gold nanocontacts39 to music and speech40 

(Figure 2.3a and b).  The wide diversity of included structures is not fully understood and 

renders any attempts at a universal model impossible.   

 

Figure 2.3: a) [Adapted from Ref. 37] J.B. Johnson found excess noise at low frequencies in the 

thermionic emission of tungsten filaments.  b) [Adapted from Ref. 39] Voltage noise versus 

frequency in electromigrated gold junctions taken at a bias of 50mV.  c) [Adapted from Ref. 40] 

1/f noise found in a. Scott Joplin piano rags, and  b. classical, c. rock, and d. news and talk radio 

stations. 
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 In electronic systems, at least, 1/f noise is attributed to resistance fluctuations.  Sources of 

resistance fluctuations include shifts in atomic motions or two-level fluctuations,31,32,41,42 charge 

trapping,43 mobility fluctuations,44,45 and more.  Following from the classical Ohm’s law, 

resistance fluctuations lead to voltage fluctuations that are quadratic in bias or current, since 

〈(µ')!〉 = 〈(µ*)!〉 ∙ )!.  In nearly all resistors, resistance fluctuations exist even in the absence 

of a driving current,32 but 1/f noise is still considered a nonequilibrium noise because it is only 

revealed once a system is driven out of equilibrium by an applied bias or current.   

 Hooge’s law, though it is generally agreed to have no universal origin, has been used for 

decades to describe 1/f noise: 

√¶(é)

§#
= ƒ

Zé
= 	 √≈(é)

ø#
 (2.3) 

where a, known as the Hooge parameter, is a material-dependent constant, and N denotes the 

number of fluctuating particles.  For bulk conductors, N is usually taken to be the total number of 

electrons.  As N is dependent on volume, and thus resistance, spectral density tends to scale 

inversely with system size, which is consistent with local rather than long-range noise sources.  

In general, one can simply think of the spectral density ∂(G) ∝ GV«, with b ordinarily in the 

range of 0.8 - 1.4.   

 

2.3  Shot Noise 

 The remainder of Chapter 2 will be dedicated to shot noise, a nonequilibrium noise that is 

the basis for the studies in thesis.  Shot noise arises due to the discrete nature of charge carriers;  

though there is some average current, there will be fluctuations in the actual arrival times of 

electrons at the drain.  Walter Schottky first discovered the presence of shot noise in vacuum 

diodes in 191846 and defined the current noise spectral density in the classical limit: 
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∂ø = 2M < ) >, (2.4) 

where e is the effective charge of the conductive carriers, and <I> is the time-averaged current.  

As evidenced from the formula, shot noise has no frequency dependence (i.e. it is white noise), 

and it is only generated when a system is driven out of equilibrium by an applied bias or current.  

This definition of the current noise spectral density holds for systems in which electronic 

transport is characterized by uncorrelated, non-interacting tunneling processes.  Namely, when 

the arrival events of electrons at the drain can be described by Poissonian statistics. 

 

2.4  Poissonian Statistics 

 A Poisson probability distribution (Figure 2.4) describes a set of events with some mean 

rate, but the actual timing of an individual event is uncorrelated to the timing of any other event 

in the set.  Therefore, the actual timing between successive events will fluctuate.  Examples 

include, the number of goals scored during a game between two teams, the number of men killed 

by a horse kick each year in the Prussian army,47 and the number of yeast cells used in brewing 

Guinness.48 
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Figure 2.4: Examples of Poissonian distributions, ¥(Q = s) = MV…
 É

É! , for three different average 

number of events.   

 

 For a given time interval, an event can occur any number of times, or not at all.  The 

probability that there are k events during a certain interval is given by  

¥(Q = s) = MV…
 É

É!  , (2.5) 

where l is the average number of events per interval.  In terms of an average rate r instead of 

average number of events, this becomes 

¥(s	MwM?ÃÕ	Œ?	ÃŒ|M	Ã) = MVœΩ
–—É

É! . (2.6) 

 Return to Schottky’s example of electron discharge into a vacuum to determine the mean 

square deviation for a given time interval t.46  If I0 is the time-averaged current over all time 

intervals and It  is the average current for interval t, then the deviation of It from I0 is given by 

Δ) = 	 )D − )£. (2.7) 
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The ultimate goal is to derive the mean square deviation Δ)!”””””.  Let Nt be the number of electrons 

discharged within interval t on average.  In actuality, the number of electrons discharged will 

vary, and for a certain interval of time t, let the real number be nt.  The mean deviation in 

number of electrons discharged is then 

∆X = 	?D − X>. (2.8) 

For a Poissonian distribution, the variance of the set is equal to the mean, so that 

∆X””””! = X>, (2.9) 

If )£ =
~ZD

D
= MX and )D =

~A‘
D

, where e is the fundamental charge of an electron, then  

∆) = ~∆Z

D
 , (2.10) 

and  

∆)!””””” = ~#

D#
∆X!”””””” = ~#

D#
X> = ~#Z

D
 (2.11) 

or in terms of I0, 

∆)!””””” = 	 ~øÆ
D

. (2.12)  

From this we can see the mean-square deviation of the current is directly proportional to the 

average current multiplied by the charge of the carriers.  The traditional expression for the 

current spectral density, ∂ø = 2M), can then be found via a Fourier transformation to the 

frequency domain.  A more detailed derivation can be found in Reference 49.49     

 

2.5  The Fano Factor 

 Many processes and interactions can cause shot noise to be suppressed below or 

enhanced beyond the 2eI limit (some of which will be discussed in upcoming sections).  The 

Fano factor, named for Ugo Fano and his statistical analysis of ionization yield from radiation,50 
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is a descriptor of how measured noise compares to the perfectly non-interacting, Poissonian case.  

The current spectral density is then written as ∂ø = 3 ∙ 2M), where e can also be taken to be e*, 

the effective charge of the carriers, which may be greater than or less than 1e.  As the effective 

charge and the average current are contained in the 2eI term, the Fano factor then carries 

different, independent information about the system.  For example, in the case of a ballistic, or 

quasi-ballistic few-channel junction, the Fano factor can provide the single-particle 

transmittances of the channels.51–53  The Fano factor can also reveal electron-electron or electron-

phonon interactions.54,55   

 

2.6  Shot Noise of a Non-Interacting Single Barrier 

 The simplest case of a system that produces shot noise is transport through a single 

barrier with no interactions.  Though basic, this example is very useful for elucidating the 

partition nature of shot noise and the results are still applicable in many experimental systems, 

such as metallic atomic-scale junctions or 2DEGs.  Consider a single barrier placed between two 

metallic leads, assuming for now only one transmission channel.  The “barrier” in this case is 

simply a means of deriving the transmission probability for an electron passing through the 

system of interest.  The actual microscopic structure is unimportant for the derivation.   

 Begin with the situation in which a one-dimensional beam of particles is incident on the 

barrier.  At zero temperature, there is no smearing of the Fermi-Dirac distributions, and the only 

source of noise is shot noise arising from the fluctuations in number of particles being 

transmitted or reflected by the barrier.  Framing the transport using the Landauer-Büttiker model, 

the current noise spectral density should be of the form 

∂ø = 2M'+£〈∆?ê
!〉 (2.13) 
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where 〈∆?ê
!〉 is the mean-square fluctuation of the transmitted intensity of the beam of particles.  

To determine 〈∆?ê
!〉 in terms of the transmission probability of the barrier, let T be the 

probability an incident particle is transmitted and R be the probability the particle is reflected.  If 

the beam is incident on the barrier with an intensity 〈?〉 = 1, then the transmitted and reflected 

intensities are 〈?ê〉 = E and 〈?§〉 = *.  The mean square fluctuations of the transmitted and 

reflected particles are 〈(∆?ê)!〉 = 〈(?ê − 〈?ê〉)!〉 and 〈(∆?§)!〉 = 〈(?§ − 〈?§〉)!〉, respectively.  

Since transmission and reflection are inversely related, a positive fluctuation for transmission is a 

negative fluctuation for reflection, ∆?ê = −∆?§.  So then 

〈(∆?ê)!〉 = 〈(∆?§)!〉 = −〈∆?ê∆?§〉     (2.14) 

= −〈(?ê − 〈?ê〉) ∙ (?§ − 〈?§〉)〉 

= −〈?ê?§ − ?ê〈?§〉 − ?§〈?ê〉 + 〈?ê〉〈?§〉〉 

= −(?ê?§ − 2〈?ê〉〈?§〉 + 〈?ê〉〈?§〉). 

nT and nR are orthogonal, so ?ê?§ = 0, leaving 

〈(∆?ê)!〉 = 〈?ê〉〈?§〉 = E* = E(1 − E). (2.15) 

Equation 2.13 then becomes 

∂ø = 2M'+£E(1 − E),  (2.16) 

or to generalize to the case of multiple channels with transmission coefficients ti, the final form 

is 

∂ø = 2M'+£ ∑ >N(1 − >N)N . (2.17) 

It follows then that the Fano factor, the Landauer noise divided by the Poissonian noise is 

given by 

3 = !~∑’Æ ∑ D[(RVD[)[

!~ø
= 	 !~∑’Æ

∑ D[(RVD[)[

!~∑’Æ ∑ D[[
=

∑ D[(RVD[)[

∑ D[[
. (2.18) 
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Consider briefly how this expands to macroscopic tunnel junctions.  Macroscopic tunnel 

junctions are essentially two leads with many transmission channels, separated by a single, 

reasonably opaque barrier, so that the tunneling conductance divided by the number of channels 

is small compared to 
!~#

q
.  This is equivalent to having many single-channel junctions, all with 

>N ≪ 1, in parallel.  This results in a Fano factor of 1 in the limit of many poorly transmitting 

channels.   

From the Equations 2.17 and 2.18 definitions of the Fano factor and shot noise, one can 

see that shot noise is suppressed to zero for fully transparent (ti = 1) or fully reflective (ti  = 0) 

channels due to the ti (1-ti) term.  In the case of a single channel, F=1-t, and SI approaches the 

Poissonian limit as t®0.  Most experimental cases are rarely perfectly single-channel or 

completely transparent/reflective, so typically shot noise is only mostly or partially suppressed.  

Noise suppression due to high channel transmission has been confirmed experimentally both in 

2DEGs56,57 and  atomic-scale metallic51,58,59 and molecular junctions52 (Figure 2.5). 

 

Figure 2.5: a) [Adapted from Ref. 57] Conductivity and current noise as gate voltage adjusts the 

width of a 2DEG.  Positions of shot noise suppression correspond to steps in the conductance.  

b) [Adapted from Ref. 51] Excess noise in 27 gold contacts.  Solid line is the case of a single 

partially transmitted mode. c) [Adapted from Ref. 53] Fano factor of ensembles of silver (left) 

and gold (right) atomic contacts.  In both, noise suppression is seen near integer values of G0. 
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In atomic-scale gold junctions, noise is largely suppressed when the conductance is near 

1G0, confirming conductance quantization, not simply stable atomic configurations that 

coincidentally give +~ !~#

q
.  However, in other metals with multiple channels involved in 

conduction, such as aluminum which has three quantum channels for a single atom contact, noise 

is much greater (Figure 2.6).58   

 

 

Figure 2.6: [Adapted from Ref. 58] Fano factor for current noise measured in gold (filled 

circles) and aluminum (open circles).  While gold shows suppression at integer values of G0 due 

to fully transmitting channels, aluminum, which has multiple channels involved in conduction, 

even at 1G0 does not show the same trend.   
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 Given the Landauer model definitions for conductance, + = +£ ∑ >NN , and Fano factor, 

3 =
∑ D[(RVD[)[

∑ D[[
, it is possible to derive the transmission probabilities for a given system of a few 

quantum channels if the shot noise level and conductance are well known.  In systems with only 

one or two channels, the transmission coefficients may be found precisely,60–62 and in cases of 

more channels, statistical analysis can still place bounds on their values (Figure 2.7).53,63  This 

process was used in the work of Chapter 5 in atomic-scale gold junctions at 77 K and will be 

discussed further. 

 

Figure 2.7: a) [Adapted from Ref. 53] Conductance traces and calculated transmission 

coefficient ranges for silver, gold, aluminum, and platinum point contacts formed by the 

mechanical break junction method.  b) [Adapted from Ref. 63] Transmission coefficient 

estimates for the four most contributing channels in nickel oxide break junctions.   

   

 The above derivations in the zero-temperature limit require some adjustment when 

adding in finite temperature, namely the addition of Johnson-Nyquist noise and the smearing of 
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the electronic Fermi-Dirac distributions.  In the finite temperature limit, the total current noise 

spectral density, including thermal and shot noise, is given by 

∂ø = 4stE+£ ∑ >N! + 2M' coth g ~∑

!zÑê
h +£ ∑ >N(1 − >N)NN . (2.19) 

In the limit of T® 0, we recover the Landauer shot noise, Equation 2.17.  In the limit of V=0, we 

are left with only the Johnson-Nyquist noise.  In the high bias limit, since lim
~∑≫!zÑê

coth g ~∑

!zÑê
h =

1, we find that the noise scales linearly with bias as in the zero temperature case.  In the low-bias 

limit, however, the coth term causes a curvature of SI(V) around zero bias that sharpens with 

decreasing temperature (Figure 2.8a).64  This curvature is a useful feature for shot noise 

thermometry and can be used to discern sample temperature even when the absolute magnitude 

of the noise is uncalibrated.65  Figure 2.8b demonstrates how shot noise can be used for 

thermometry.  The zero bias current noise intercept indicates the Johnson-Nyquist noise, and at 

high bias, the current noise is linearly fit to 2eI.  If one extrapolates the high bias linear fit to the 

point where it intersects with the Johnson-Nyquist noise at positive and negative bias, the voltage 

span between the two intersection points is 
%zÑê

~
.   
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Figure 2.8: a) [Adapted from Ref. 64] Shot noise in an Au/hBN/Au tunnel junction as a function 

of temperature.  The curvature about zero-bias sharpens as temperature decreases.  b) [Adapted 

from Ref. 65] Zero bias curvature of shot noise can be used for thermometry. 

 

2.7  Shot Noise of an N-Barrier System 

 Returning to the model of a one-dimensional channel with a single barrier between two 

leads, consider what happens if instead there are two barriers.  Several experiments have 

demonstrated shot noise for a double-barrier system.66–69  For transmission probabilities T1 and 

T2, in the very asymmetric limit (ER ≪ E! or E! ≪ ER) full Poissonian shot noise is found because 

the dominant barrier generates all the noise, but in the symmetric case ( ER ≅ E!) noise is 

reduced by half.  Theoretical approaches to the two barrier system first derived by Chen and 

Ting, using a quantum mechanical method,70 and by Davies et al.,71 using classical formulations, 

arrived at the same equation for the Fano factor, 

3 = ế#Wê#
#

(ế Wê#)#
. (2.20) 

compared to the rf signal) bias across the device is modu-
lated as a square wave at 5 kHz and supplied via the low fre-
quency port of the bias tee. The resulting square wave
current is collected from the low frequency port of the bias
tee on the other side of the device and measured using a cur-
rent preamplifier (Stanford Research Systems SR570) and
lock-in detection at the modulation frequency. To avoid 1/f
noise effects in the system, an RF frequency range that is
much higher than the 1/f noise rolloff (tens of kHz) was
chosen for the noise detection. The RF component, which
contains the fluctuation information, is filtered using a
250 MHz to 600 MHz band-pass filter and then amplified and
measured by using a logarithmic power detector to convert
into a voltage output (which corresponds to the noise power).
A second lock-in amplifier also synchronized to the square
wave detects the difference between the power detector’s
output corresponding to finite-voltage and zero-voltage. This
difference combined with the detector’s average output can
finally be translated to give the difference in noise power at
finite-voltage and zero-voltage, which is proportional to the
excess noise SI(V)-SI(V¼ 0). The detected power is ultimately
limited by the reflection coefficient C ¼ R" Z0ð Þ= R þ Z0ð Þ:
In the mismatched case, where the sample’s resistance R
is much larger than impedance of the transmission line
Z0 ¼ 50 X, the noise power Pmeasure that is coupled to the
transmission line and amplifier chain becomes18

Pmeasure ¼ Pnoise 1" C2ð Þ & 4Z0SI;

where SI is the current noise spectrum density. Ideally, by
calculating the measured power, the sample’s real current
fluctuation can be identified. However, as the effective

electrical circuit shown in Fig. 3(b), many additional, extrin-
sic factors can contribute to RF signal loss, including capaci-
tive coupling to ground, effective inductance of the narrow
Au leads and their antenna effects, non-ideal wirebonds and
connectors, and loss in coaxial wiring, and so the measured
signal is smaller than the ideal value by a factor particular to
the measurement setup and geometry that must be calibrated.
Moreover, care in interpretation must be taken in devices
with strongly nonlinear I-V response, as the analysis above
assumes linearity. As implemented, this modulated RF shot
noise measurement technique can be applied to samples with
weakly non-linear I-V curves, and the sensitivity is limited
by the measurement system’s RF signal attenuation and the
power detector’s background fluctuation.

The evolution of shot noise with temperature has the
well-known form18,19

SI ¼ 2eVG coth
eV

2kBT

! "
:

In the low temperature limit where eV
2kBT ' 1, SI & 2eVG

¼ 2eI, which gives the classical shot noise result; in the

small bias limit, coth eV
2kBT

# $
& 2kBT

eV and SI & 4kBTG, which

represents the thermal fluctuation in the system. Therefore,

the excess noise Sex ¼ 2eVG coth eV
2kBT

# $
" 4kBTG, before

accounting for the impedance mismatch as described above.
As explained, it is necessary to calibrate the noise col-

lection efficiency of the measurement setup due to nonideal-
ities in the RF environment. A broadband RF white noise
source was employed to test the attenuation of the measure-
ment system integrated over the full bandwidth. It was found

FIG. 3. Shot noise measurement on
Au/hBN/Au junctions. (a) Schematic
circuit of the shot noise measurement
setup. (b) Effective electrical circuit of
the RF signal transmission. R is the
sample’s resistance, Z0 is the transmis-
sion line/amplifier’s load resistance, C1

is the capacitance of the tunnel junc-
tion, C2 is the additional capacitance
of the on-chip Au leads and bonding
pads, and L is the effective inductance
of Au leads. (c) Fits (solid lines) to the
measured shot noise intensity (open
symbols) and below are the corre-
sponding residuals at different temper-
atures. The noise collection efficiency
A is the only adjustable parameter in
the fit. (d) Extracted noise collection
efficiencies at different temperatures.
The black dots are the noise collection
efficiencies obtained from the fitting.
The red dots are the noise collection
efficiencies extracted from the inter-
section analysis of Fig. 4, as described
in the main text.

133106-3 Zhou et al. Appl. Phys. Lett. 110, 133106 (2017)

plifier gains (18, 19). A promising noise ther-
mometer based on the ac Josephson standard is
being investigated by a collaboration of several
standards labs (20). This thermometer shares
with the SNT the prospect of relating tempera-
ture to the Josephson voltage standard.

Although not of direct interest for most
noise thermometry experiments, another impor-
tant type of electrical noise is shot noise, first
described by Schottky in 1918 (21). Shot noise
appears in any system in which current consists
of random discrete tunneling events, such as a
tunnel junction or a vacuum tube. Shot noise is
both frequency- and temperature-independent
and has the current spectral density SI ! 2eI,
where I is current. The junction noise used for
the SNT displays both shot noise and Johnson
noise, with a voltage-dependent transition
between the two regimes. This temperature-
dependent transition voltage allows us to deter-
mine temperature with only the use of a mea-
surement of the dc voltage and a relative noise
power measurement.

A tunnel junction can be modelled as a
pair of ideal Fermi reservoirs separated by a
tall, thin energy barrier. The tunneling rate
from a given energy level in one metal into
the other metal can be evaluated by Fermi’s
golden rule. It is well known that the tunnel-
ing rates are given by

"r31(13r) !
2#

$
%⎪&1'M(E)'r*⎪

2
D2(E)

fr(1) (E)[1 + f1(r)(E)]dE (1)

where &l⎪M(E)⎪r* is the tunneling matrix el-
ement from the left to the right side of the
junction, D(E) is the density of states, and
fl(E) and fr(E) ! fl(E + eV ) are Fermi func-
tions used to count the empty and filled states
on the left and right reservoirs, respectively
(22). For a sufficiently tall, thin barrier, the
tunneling amplitude and the density of states
near the Fermi energy can be considered to be
independent of energy. The occupation prob-
ability of any given state in one of the metals
is given by a Fermi function. Thus, under the
conditions that [eVbias, kBT] ,, Ebarrier, all
the terms can be moved outside of the inte-
gral except the Fermi functions. The current
through the junction can be found by taking
the difference of these two rates to get

I ! Ir + Il !
2#e
$

⎪&1⎪M(EF)⎪r*⎪
2

D(EF)2% [ fr(E)+ f1(E)- dE ! V / R (2)

In other words, under these conditions, the
junction is just an ohmic resistor with no
temperature dependence. To find the current
spectral density of the noise, we just evaluate
the sum of the rates across the barrier instead
of the difference. Evaluation of the integral
gives the well-known result (23–25)

SI(V)!
2

R
%{ fr(E)[1+ f l(E)]. f1(E)[1+ fr(E)]}

dE!
2eV
R

coth! eV
2kBT"!2eIcoth! eV

2kBT"
(3)

Unlike the current, this expression has a
temperature-dependent scale that follows di-
rectly from the Fermi-Dirac distribution.
Evaluation of Eq. 3 at zero bias voltage yields
the Johnson result SI ! 4kBT/R, as required
by the fluctuation-dissipation theorem (26),
whereas in the limit eV // kBT Eq. 3 reduces
to SI ! 2eI, or shot noise (Fig. 1). As a
function of voltage, the junction noise chang-
es smoothly from Johnson noise to shot noise
in a way that depends only on kB, e, and a
simple analytic function. Thus, the voltage
dependence of the noise in Eq. 3 is analogous
to the equation of state of the ideal gas.

By measuring the noise as a function of
voltage, the temperature can be determined
from the voltage scaling of this transition
independent of the gain or noise of the am-
plifier chain and detector. This frees us from
the major limitations of traditional noise ther-
mometry: the need to calibrate gain, noise
temperature, and bandwidth to high accuracy.
The elimination of the need for absolute ac-
curacy in the amplifier chain calibrations al-
lows much more freedom in the selection of
components. In particular, we may replace
the kHz bandwidth amplifier typically used
by microwave amplifiers with hundreds of
MHz of bandwidth, allowing for a much fast-
er readout. In general, our amplifier has a
frequency-dependent gain g (0) and a noise
temperature tn(0), and we can fit the total
noise power P to the equation

P(V,T )! %d0g (0)# tn(0) .

eV
2kB

coth! eV
2kBT"$ !

G#Tn .
eV
2kB

coth! eV
2KBT"$ (4)

with average gain-bandwidth product G, av-
erage noise temperature Tn, and temperature
T as fit parameters. Equation 4 shows (Fig. 1)
that the SNT relates temperature to voltage in
a way that is independent of G and Tn. The
method is also independent of effects such as
frequency-dependent gain or impedance of
the sensor, the transmission of the tunnel
barrier, the sensor resistance, or any other
effect that does not vary with DC bias voltage
(27). Thus, our method retains the advantag-
es of noise thermometry, being primary and
electronic, but is much faster and simpler.

For a sensor, we used an Al-AlOx-Al tunnel
junction, fabricated with the use of electron

beam lithography and the Dolan bridge double-
angle evaporation technique (28, 29). We
designed the junctions to be about 50 ohms to
match to the impedance of the microwave elec-
tronics. These junctions show similar conduc-
tance characteristics to devices from published
literature (30), which have a barrier height of
about 2 V and a barrier thickness of about 1 nm.
During all measurements below 1.5 K, we ap-
plied a 0.5-T magnetic field to keep the alumi-
num in a nonsuperconducting state, although
the need for this field could be eliminated by
using a normal metal or by adding a local
permanent magnet.

In order to verify the form of the junction
noise, we simultaneously measured the dc
voltage and the radio frequency (rf ) noise
power (Fig. 2). We varied the bias across the
device to measure the noise as a function of
voltage across the junction. By fitting these
data to the predicted junction noise with a
least squares fit, we can determine a temper-
ature TSNT. We measured the junction noise
as a function of temperature from 0.260 to
300 K in a variable-temperature 3He refrig-
erator and from 0.01 through 4.2 K with the
use of a dilution refrigerator.

Before the SNT can be trusted as a
thermometer, we must verify the validity of
our “ideal gas law,” that is, whether the
junction noise follows the prediction of Eq.
3. To do this, we display the noise data in a
dimensionless form, normalizing the noise
power relative to the zero bias noise and the
voltage relative to the temperature (Fig. 3).
The data at all temperatures agree well with
a simple universal form over four decades
in temperature.

The largest deviations of the noise from
the expected form occur at the highest and
lowest temperatures. At temperatures above
about 30 K, we see deviations in the func-
tional form by as much as a few percent.
Because the devices are fabricated on a half-
micrometer-thick layer of silicon dioxide

Fig. 1. Theoretical plot of current spectral den-
sity of a tunnel junction (Eq. 3) as a function of
dc bias voltage. The diagonal dashed lines indi-
cate the shot noise limit, and the horizontal
dashed line indicates the Johnson noise limit.
The voltage span of the intersection of these
limits is 4 kBT/e and is indicated by vertical
dashed lines. The bottom inset depicts the oc-
cupancies of the states in the electrodes in the
equilibrium case, and the top inset depicts the
out-of-equilibrium case where eV // kBT.
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This definition of F explains well the asymmetric and symmetric regimes.   

Beyond the two barrier case, de Jong and Beenakker72 derived the solution to the n-

barrier tunneling problem.  Assuming each barrier has the same transmission probability T, they 

find 

3 = 	 R
@
g1 + A(RVê)#(!Wê)VêB

[êWA(RVê)]B
h.  (2.21) 

As ? → ∞, 3 → R

@
, independent of the value of T, which is the universal limit of noise in a 

diffusive conductor.  Multiple theories, using both quantum and classical approaches have 

arrived at the 3 = R

@
 limit for shot noise in diffusive systems.72–76  The 1/3 suppression of shot 

noise is common across diffusive conductors, regardless of the exact details of the particular 

conductor.   

 The above model assumes phase coherence; the length scale was longer than the mean 

free path, but still shorter than the inelastic scattering length.  The case of N uncorrelated noise 

sources was considered by Landauer using a model of a series of vacuum diodes (Figure 2.9).77  

The N diodes are all assumed to have large enough voltage to allow every electron emitted by 

each cathode to cross over to the anode.  Therefore the current in each diode is independent of 

the voltage across it.  Each diode exhibits independent and uncorrelated shot noise.  The 

fluctuating current in the diode charges up the corresponding capacitance, and the fluctuating 

charge is then distributed to the rest of the circuit.  We can consider a noise current generator in 

parallel with each diode (Figure 2.9), with each generator producing mean-square noise current 

〈ŒA!〉∆é = 2M)∆G, where Df is the frequency band of interest, and I is the externally maintained 

current.  The noise of each generator is fed to a parallel circuit.  One branch is the capacitor 

attributed with the particular diode generating the noise, and the other is the remaining (N-1) 

capacitors in series.  The actual diode currents are unaffected by the fluctuating capacitive 
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voltages, and therefore, they are excluded from the differential signal current.  The current flow 

through the external circuit due to one of the noise generators is equal to that through the (N-1) 

series capacitors 

Œ~]Ω = ŒA
fi¨Å´

fí Wfi¨Å´
, (2.22) 

where YN-1 is the admittance of the (N-1) series capacitors and Y1 is that of a single capacitor.  So 

then the mean-square noise of the external current is 

〈Œ~]Ω! 〉∆é =
R

Z#
〈ŒA!〉∆é. (2.23) 

Accounting for all N uncorrelated noise generators, the total noise current is 

〈Œ!〉∆é =
R

Z
2M)∆G. (2.24) 

Equation 2.24 arises due to the nature of shot noise being a measure of stochastically 

independent events.   

 

Figure 2.9: [Adapted from Ref. 77] Shot noise in the incoherent limit modelled as a chain of N 

diodes in series, each with its own capacitance.  Each combination of diode and capacitor is 

associated with a parallel noise current generator, in.  The noise by each individual generator is 

measured in the external circuit.   
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Fig. I. Sequence of successive electron transmission events through 
a sample. Each pulse, positive or negative, represents the traversal 
of the sample by one electron. 

this connection for the regulation of  electron flow in 
mesoscopic samples, but will return to the role of  
electron-electron interactions in other ways, in later 
sections. Ref. [3] speculates on such regulation effects. 
Electron electron interactions also relate to noise by 
determining an electron temperature which can differ 
from that o f  the conductor and its reservoirs. This has 
been discussed by several investigators[6-8]. 

2. Diode chain: important sample case 

This section analyzes the noise behavior of  a series 
of  vacuum diodes, already briefly discussed in Ref. 
[9]. While, perhaps, not a system of  real importance, 
and not mesoscopic, it enables us to make some sig- 
nificant points in a system subject to easy analysis. 
The N vacuum diodes as shown in Fig. 2 are assumed 
to have a large enough voltage so that all the electrons 
emitted by each cathode cross over to the anode. Thus, 
the current in each diode is independent of  the volt- 
age across it. The diodes exhibit independent and un- 
correlated shot noise. The fluctuating current in each 
diode charges up the associated capacitance, and that 
fluctuating charge is then distributed to the external 
circuit, according to circuit theory. This leads us to 
Fig. 3 where we show a noise current generator in par- 
allel with each diode. The mean squared noise current 

T © 
I 

Fig. 2. Chain of thermionic diodes in series, each with its own 
capacitance. N is the number of diodes in series. 

T '" I 

Fig. 3. Each combination of diode and capacitor is fed by a noise 
current generator in. The noise is measured in the external circuit. 

in the frequency band Av due to one of  these genera- 
tors is shot noise with 

(i2}~,. = 2elAv, (2.1) 

where I is the externally maintained current. The noise 
current o f  Eq. (2.1) is fed into a parallel circuit. One 
branch consists o f  the capacitor of  the particular diode 
which produced the noise. The other branch consists 
o f  the (N - 1) remaining capacitors in series. (Note 
that the actual diode currents are not changed by the 
fluctuating capacitive voltages and therefore do not 
appear in this differential signal circuit.) The current 
flow through the external circuit, due to one noise gen- 
erator, equals that through the (N - 1 ) series capaci- 
tors and is 

YN 1 
iext = in YI + Y~' 1" (2.2) 

Here YN-J is the admittance of  the (N - 1 ) series 
capacitors and Yt that o f  a single capacitor. Therefore, 

.~ 1 2 
(te×t)•,. = ~5(in)a,, .  (2.3) 

We have N uncorrelated noise generators. Thus, the 
total noise current due to all these is: 

(i2}A v = 1 2 e l A v .  ( 2 . 4 )  

This result presents us with several interesting aspects. 
First of  all the noise, as given by Eq. (2.4), is less than 
the noise in the electronic carrier flow of  one diode. 
The spectral noise density for the latter is given byjMl 
shot noise, 2elAv. We can view Eq. (2.4) as a result 
o f  the fact that shot noise is really a measure of  the 
stochastically independent event. That is passage of  
one electron through one diode, and causes a transport, 
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2.8  Effects of Interactions on Shot Noise 

 As mentioned in Section 2.5, interactions can cause the Fano factor to deviate away from 

1.  The above definitions for the Fano factor were derived excluding interaction effects.  When 

the size of the system of interest is comparable to the inelastic mean free path, however, electron-

electron and electron-phonon scattering can greatly modify the shot noise.  Figure 2.9, adapted 

from the work of Steinbach et al.,54 outlines the Fano factors for current noise in a metallic 

resistor of varying length L and resistance R.  The length scales shown reflect the elastic mean 

free path l, the phase coherence length Lj, the electron-electron inelastic scattering length, Le-e, 

and the electron-phonon inelastic scattering length, Le-ph.  The electron-electron inelastic 

scattering length is the length scale over which inelastic collisions between electrons cause their 

thermalization, and likewise, the electron-phonon inelastic scattering length is the length scale 

over which the conduction electron temperature relaxes to the phonon temperature.54   
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Figure 2.10: [Adapted from Ref. 54] Fano factor as a function of resistor length, broken into 

regimes in terms of the elastic mean free path, l, the phase coherence length Lj, the electron-

electron inelastic scattering length, Le-e, and the electron-phonon inelastic scattering length, Le-

ph.   

 

 Phonons are quasiparticles that are the quantization of crystal lattice vibrational modes, 

or displacements of the atomic lattice from its equilibrium position, in bulk solids.  They are 

bosons, and therefore, there can be many phonons occupying the same mode.  The number of 

phonons for a given mode and temperature is given by Bose-Einstein statistics, 〈?〉 = R

~
ℏfl
ÉÑÖVR

, 

and the amplitude of the vibrations increases with an increasing number of phonons due to 

constructive interference.  Phonons are able to scatter electrons by imposing a finite lifetime on 

the Bloch states of the electrons in the lattice.  The scattering of conduction electrons by phonons 
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is the primary reason metals have resistivity at room temperature (~26 meV) as typical phonon 

energies are on the order of 1-100 meV.  For example, gold optical phonons have an energy of 

approximately 17 meV.  At lower temperatures, however, as stE ≪ ℏ‡, the occupation number 

n goes to zero; in other words, the vibrational states freeze out.   

 In the model of the variable-length resistor, assume the resistor is connected on either end 

to ideal thermal and electrical reservoirs that impose an electron temperature T and chemical 

potentials µL and µR such that eV = -(µL - µR) , where V is the applied bias across the resistor.  

When ï ≪ ú, the system is in the ballistic or point-contact regime, and shot noise is described by 

the Landauer model from Section 2.6.  On this length scale, the resistor itself produces no shot 

noise, indicated by the dashed line in Figure 2.10 going to zero.  Shot noise in this case is 

generated by the barriers set by transmission into the contacts.  For ú ≪ ï ≪ ï· and for ï· ≪

ï ≪ ï~V~, 3 = R

@
.  In the absence of inelastic scattering by phonons or other electrons, the 

electronic distribution in the resistor is an average of the Fermi-Dirac distributions of the source 

and drain.  The result is a position-dependent, two-step non-Fermionic distribution that 

converges to the Fermi-Dirac distributions at either end.  On the length scale ï~V~ ≪ ï ≪ ï~V‚q, 

the interacting hot electron regime, electrons now interact with one another inelastically, and the 

two-step distribution becomes smeared.  Electrons become hot via Joule heating, thermalizing 

their energy via electron-electron inelastic scattering, and they can only cool down by thermal 

conduction to the source and drain.78–80  Theoretical predictions78,81,82 set 3 = √@

%
 for this regime 

due to the local heating effect, which was confirmed experimentally by Steinbach et al.54 

As L continues to grow, electron-phonon interactions become important, and shot noise 

decays with increasing length.  For macroscopic systems, when ï ≫ ï~V‚q, electrons have 

thermalized to the phonon temperature via inelastic scattering, and shot noise is fully 
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suppressed.33,73  Beenakker and Büttiker modelled the suppression of shot noise in a macroscopic 

conductor by first considering a conductor with three contacts: source (1), drain (2), and a 

voltage probe (3) between the source and drain.73  The total conductance for this system is 

+ = +£ gE!R +
ê#BêB´
êB´WêB#

h (2.22) 

where T21 represents coherent transport from source to drain.  The second term represents 

incoherent transport in which an electron reaches the voltage probe (contact 3) and is then 

replaced by an electron from the contact 3 reservoir, which is out of phase with the original 

electron. The result is a decoherence effect.  Assuming completely incoherent transport (T21 = 

T12 = 0) and an ideal voltmeter (I3 = 0), shot noise is reduced by half due to the inelastic 

scattering.  It follows that as length is increased well beyond Le-ph and many decohering events 

occur, shot noise is ultimately fully suppressed.   

 The 1/N reduction factor derived by Landauer in the previous section77 is closely related 

to the Beenakker and Büttiker model.  Landauer argues it arises due to the fact that in the diode 

chain (Figure 2.9), as well as in the many reservoir limit of the Beenakker-Büttiker case,73 an 

electron traveling through the whole sample is not an event that occurs within some well-defined 

time limit.  The re-emission of an electron from a cathode is not closely correlated to the arrival 

event at an anode.  Analogously, the transmission or reflection of an electron at one reservoir is 

not clearly linked to similar events at other reservoirs. 
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Chapter 3 

Topological Insulators 

 Topological insulators (TIs) are of great interest due to their potential ability to achieve 

the quantum coherent transport discussed in Chapter 1 on the macroscopic scale.  TIs are 

materials that have a bulk band gap like normal insulators, but also exhibit “topologically-

protected” ballistically conductive edges (two-dimensional TIs) or surface states (three-

dimensional TIs).  These properties arise due to a combination of spin-orbit coupling and time-

reversal symmetry.   

 Many other quantum phases in condensed matter systems, including crystalline solids, 

magnets, and superconductors, are described by some mode of spontaneous symmetry breaking 

based on the Landau-Ginzburg theory of phase transitions.83  Landau-Ginzburg theory assumes 

that phase transitions are described by some order parameter, such as magnetization, the 

behavior of which characterizes the nature of the transition.  In the “normal” state, the order 

parameter is zero, but it gains some finite value when the system is in the ordered state, 

coinciding with an abrupt alteration (usually a reduction) in the symmetry of the system.  For 

example, magnets break rotational symmetry and crystalline solids break translational symmetry.   

 In 1980, however, von Klitzing et al. demonstrated a new quantum state that could not be 

described by the Landau-Ginzburg model.84  In the quantum Hall (QH) state, described in detail 

in Section 3.2, two-dimensional materials at very low temperatures under high magnetic fields 

exhibit exceptionally precise quantized Hall conductance, sH, with values either in integer or 

fractional multiples of 
~#

q
.  This quantization is remarkably immune to random disorder in 
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samples.  Quantum Hall effect (QHE) systems also exhibit dissipationless longitudinal charge 

transport along the sample edges.  The quantum Hall state was the first example of a quantum 

state that does not break any symmetries.  Instead, Thouless et al. used the concept of topological 

order to characterize this 2D phenomenon.85  The QH state is considered a topological phase in 

that specific fundamental properties, including the quantized Hall conductance and the number 

of gapless boundary modes, are unaffected by smooth changes in material parameters and can 

only be altered by quantum phase transitions as described below.   

 

3.1  Topological Order 

 In mathematics, topological order was introduced to group together geometrical objects 

into general classes.  The topological invariant common to a particular group is a characteristic 

that remains unchanged under continuous transformations.  For example, 2D objects are 

classified by their number of holes.  A perfect circle and an ellipse are topologically equivalent 

because one can be smoothly deformed into the other without creating any holes.  In physics, the 

concept of smooth deformations can be considered in terms of the Hamiltonian for a many-

particle system.86  If the general Hamiltonian of the system describes the energy gap separating 

the ground state from the excited state, a smooth deformation is a change in the Hamiltonian that 

does not close the bulk gap.  Thus, in the way that an object with one hole cannot be smoothly 

deformed into an object with two holes, one gapped state cannot be deformed into another 

gapped state in a different topological class without undergoing a quantum phase transition in 

which the system becomes gapless.   

 Thouless and his group employed topological arguments to describe the quantum Hall 

effect by accumulating all possible wavefunctions that could describe electrons in a 2D material 
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and representing the entire set as a curved surface.85  The topological invariant of the surface is a 

stable number describing the set of wavefunctions, such as the Hall conductance.  The robustness 

of the QHE and the quantization of the Hall conductance is due to the stability of the topological 

invariant; while small changes in the material may change individual electronic wave functions, 

it is much more difficult to alter the set as a whole.   

 

3.2  The Quantum Hall Effect 

 To understand the idea of topological protection and edge states in 2D topological 

insulators, we can learn important lessons from the quantum Hall effect.  The quantum Hall 

effect (QHE) is the quantum mechanical version of the Hall effect and is observed in systems at 

low temperatures and strong external magnetic fields.  Charge transport in a QHE system is 

carried out by chiral modes at the edges of a Hall bar, and the Hall conductance takes on 

quantized values with remarkable precision.  The quantum Hall effect was later expanded to the 

quantum spin Hall effect (QSHE), in which conduction is carried out by parallel spin-

momentum-locked edge modes, known as helical modes.  At a single edge, the left-moving 

mode has opposite spin of the right-moving mode.  The two helical edge states form a Kramers 

pair, protected by time reversal symmetry.  The QSHE forms the basis for the model of a two-

dimensional topological insulator, often called quantum spin Hall insulators. 

  

3.2.1  The Classical Hall Effect and the Discovery of the Quantum Hall Effect 

 The Hall effect, discovered by Edwin Hall in 1879,87 describes the potential difference in 

a conductor that arises perpendicular to the flow of current due to the presence of an external 

magnetic field.  Figure 3.1 shows an example of a Hall effect measurement setup.  Current I 
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flows in the x-direction through a 2D conductor of width W.  Two pairs of voltage probes are 

situated on either side of the conductor, each separated by length L.  Potential differences are 

measured both longitudinally, between two probes on the same side, Vxx, and transversely, 

between two probes on opposite sides, Vxy.  The conductivity or resistivity of a 2D electron 

system can readily be measured from Vxx.   The electric field experienced by the charge carriers 

in the absence of a magnetic field is given by 

2 = ∑‰‰
/

, (3.1) 

and the current density is 

0 = Â

.
.  (3.2) 

The longitudinal conductivity in the absence of a magnetic field is then 

1]] =
_

l
= ø/

.∑‰‰
. (3.3) 

The longitudinal conductivity is equivalent for the upper or lower sets of contacts unless a 

magnetic field B is applied perpendicular to the plane of the conductor.  In that case, charge 

carriers will be deflected based on the Lorentz force, Ê = 4(2 + 7 × 9), where q = -e, the 

electron charge, and v is the longitudinal drift velocity of the charges.  Depending on the sign of 

B, electrons will either be deflected toward the top or bottom edge of the conductor.  Since the 

electrons cannot escape, an accumulation of charge builds up, resulting in a transverse electric 

field Ey that opposes the Lorentz force.  A steady state is reached when enough charge has built 

up to exactly balance the transverse electric field and the Lorentz force, and again, current only 

flows in the x-direction.  The resulting potential difference between the top and bottom edge, Vxy, 

is known as the Hall voltage.   

 The steady state condition is 

iÁ = Ëw. (3.4) 



 52 

If n is the 2D charge carrier density, then w = _

A~
.  The Hall resistance, defined as the 

transverse potential difference, ']Á = iÁÈ, divided by the current, ) = aÈ and normalized for 

the magnetic field is  

*Í =
.lÎ
._t

= R

A~
. (3.5) 

The Hall effect, then, is helpful in deducing the composition of a conductive 2D system.  In 

terms of conductivity we have 

1]] =
ø/

∑‰‰.
= ?M} (3.6) 

and  1]Á =
A~

t
,  

where } = Ø

l
 is the electron mobility.  

 

Figure 3.1: Example of a typical Hall bar setup.  
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 If B is sufficiently large, then cyclotron orbits of the conduction electrons are possible.  

Cyclotron orbits describe the circular motion, sometimes superimposed with lateral motion, of 

electrons in a stationary, uniform magnetic field due to the Lorentz force.  The angular frequency 

of cyclotron motion is given by ‡± =
~t

=Ï
, where B is the magnitude of the magnetic field, e is the 

electron charge, and me is the electron mass.  For a very clean system, free from defects or 

impurities, electrons may undergo many orbits between scattering events, and the resulting 

phase-coherent transport requires a quantum mechanical approach.   

 

Figure 3.2: Under very large perpendicular magnetic field, electrons in a Hall bar begin to 

move in cyclotron orbits with chiral transport along the edges. 

 

First, though, consider the more simplified picture in Figure 3.2.  In the bulk of the Hall 

bar, electrons can no longer carry the longitudinal current, but at the top and bottom, carriers 

move via “skipping orbits” by bouncing off the edges.  This mode of transport in which a particle 

is restricted to move in a single direction bouncing along a straight line is referred to as chiral.  
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Due to the disparity in charge accumulation, carriers at the top edge move in the opposite 

direction of carriers at the bottom.  Since no transport occurs in the bulk, the two edges are 

spatially separated by an insulating barrier and cannot scatter into one another or to any other 

states.  Due to this long-range coherence, the chiral edge transport can be described by the 

Landauer-Büttiker model.  Based on the labelling in Figure 3.2, the transmission coefficients are 

>N→NWR = 1 and zero otherwise.  Using the Landauer-Büttiker picture, the current flowing out of 

probe i is given by 

)N =
~#

q
∑ û>_N'_ − >N_'Nü_ , (3.7) 

where tji is the transmission coefficient from probe j to probe i, Vj is the voltage of probe j, and 

vice versa.  In Equation 3.7, spin has been neglected for now; accommodating for spin requires 

an additional sum over possible spin orientations.  As no current flows into or out of probes 

2,3,5, or 6, the voltages Vi at each terminal equilibrate, so that 'R = '! = '@ and '% = 'Ì = '® =

0.  V1 is determined from the current I and the overall source-drain conductivity.  In terms of a 

noninteracting 1D channel in the Landauer-Büttiker model, we can reasonably assume the 

conductivity is 
~#

q
.  Then, ']] = 0, and ']Á =

øq

~#
.    This is the limit of the quantum Hall effect, 

when the longitudinal and transverse resistivities are functions of the magnetic field or carrier 

density given by Ó]] = 0 and Ó]Á =
q

A~#
, where n is an integer.  Similar to conductance 

measurements in atomic scale contacts, the value of n in QH measurements can reveal the 

number of chiral edge channels involved in transport. 
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Figure 3.3: a) [Adapted from Ref. 89] First evidence of the Quantum Hall effect. b) [Adapted 

from Ref. 88] Another example of oscillatory longitudinal resistance and quantized Hall 

resistance by Cage et al.88  

 

Von Klitzing et al. were the first to observe this phenomenon in a 2D inversion layer of 

silicon metal-oxide-semiconductor field effect transistor at a temperature of 1.5 K and magnetic 

field of 18 T.84  They found that as a function of the gate voltage, the longitudinal resistance 

showed strong oscillatory behavior, while the Hall resistance exhibited plateaus corresponding to 

the minima in the longitudinal resistance (Figure 3.3).  Even from the initial measurements, the 

QHE shows incredible precision, with parts-per-billion measurements now being standard, and 

the QHE is now the basis of a metrological standard.89     
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3.2.2  Quantum Approach to the Quantum Hall Effect 

 Consider a 2D electron system, with infinite length in x and width W in y.  Confinement 

in y is enforced by an infinite potential 

'(Ô) = 	
0, |Ô| < .

!
∞, ÚÃℎMÙıŒÕM

. (3.8) 

Apply some transverse magnetic field 9 = Ëˆ̂.  The Hamiltonian in this case for an electron of 

mass m and charge -e is given by  

¯̆ = R

!=
(˙̊ − M¸)! + '(Ô) (3.9) 

where ˙̊ is the canonical momentum operator, and A is the vector potential, which is related to 

the magnetic field by 

9 = ∇ × ¸. (3.10) 

The Hamiltonian is gauge invariant, meaning the physical properties are not influenced by the 

specific gauge chosen.  The simplest choice, then, is the Landau gauge, which sets the vector 

potential as 

¸ = 	˛
−ËÔ
0
0

ˇ (3.11) 

so that 9 = ∇ × ¸ = Ëˆ̂.  The Hamiltonian then becomes 

¯̆ = R

!=
(˙̊ − M¸)! + '(Ô) = R

!=
({̂] + MËÔ)! + R

!=
{̂Á

! + '(Ô)	. (3.12) 

 Since x does not appear in the equation, the x-momentum operator {̂] commutes with the 

Hamiltonian, meaning it can be replaced by its eigenvalue ℏs], and we can rewrite the 

Hamiltonian 

¯̆ = R

!=
{̂Á

! + R

!
| g~t

=
h
!
gÔ + ℏz‰

~t
h
!
+ '(Ô). (3.13) 
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When |Ô| < .

!
 so that V(y) = 0, this is the exact Hamiltonian for the quantum Harmonic 

oscillator (¯̆ = ˙̊#

!=
+ R

!
|‡!Q!!) centered about Ô = −ℏz‰

~t
 with cyclotron frequency ‡± =

~t

=
.  So 

in the limit that the electron’s wavefunctions are confined within ±.

!
, the energy spectrum of the 

electrons can be described by discrete values iA = g? + R

!
h ℏ‡±, for ? ≥ 0.  Each set of 

wavefunctions with the same n value is known as a Landau level.   

 In units of length, the width of the ground state of the simple harmonic oscillator is on the 

order of π
ℏ

=#$
.  In order for the Landau level spectrum to be valid within the interior of the 

conductor, this width, called the magnetic length lB, must be much smaller than the width of the 

channel, út = π ℏ

~t
≪ È.  For perspective, π ℏ

~t
≈ 26	nm for B = 1 T.  If |s]| is large enough, 

however, the center point of the magnetic potential will be outside of the well edges at Ô = ±.

!
	, 

forming a nearly triangular well and raising the ground state energy (Figure 3.4a,b).90  As a 

function of y, the levels increase to some large value or even to infinity, depending on the details 

of V(y) at the edges (Figure 3.4c).   

 

  



 58 

 

Figure 3.4: a,b) [Adapted from Ref. 90] Magnetic potential and hard wall potential as a function 

of y for two values of kx, including the wavefunction and energy level of the ground state for the 

Hamiltonian from Equation 3.13.  c) [Adapted from Ref. 89] Ideal Landau levels for a system 

with boundaries. Fully occupied levels toward the center of the device rise in energy close to the 

edges, resulting in metallic modes near the intersection of the Landau levels with the Fermi 

energy.  

 

Within the interior, the Landau levels are highly degenerate (Figure 3.4c).  At a given 

energy, kx can be any value that fulfills two requirements.  Firstly, for a finite length in x, given 

by L, kx will assume integer values of 
!\

/
, or s] = X !\

/
, where N can be any positive or negative 

integer.  Secondly, kx must be small enough to keep the center of the magnetic potential within 

the interior.  Together, these limits state 

'!\ℏZ
~t/

' < .

!
 or |X| < ~t

!q
ïÈ. (3.14) 

The degeneracy per unit area (
Z

/.
), then, is 

~t

q
, counting both positive and negative values of N.    

In terms of magnetic flux, if Φ = ËïÈ is the magnetic flux through unit area LW, each electron 
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occupies in real space the area of one flux quantum, Φ£ =
q

~
, and the degeneracy per Landau 

level is  

X =	 )
)Æ

. (3.15) 

 In the Landau gauge, it is simple to add in an electric field along the y-direction by 

adding an electric potential * = ℇÔ, which changes the Hamiltonian to 

¯̆ = R

!=
{̂Á

! + R

!
| g~t

=
h
!
(Ô − Ô£)! + MℇÔ	 + R

!
| ℇ#

t#
, (3.16) 

where the new center of the harmonic oscillator is Ô£ = − ℏz‰
~t

− =ℇ

~t#
. 

The total energy of this new displaced harmonic oscillator, including contributions from both the 

harmonic oscillator and drift motion is  

i = 	ℏ‡± g? +
R

!
h − Mℇ gz‰ℏ

~t
+ =ℇ

~t#
h + R

!
| ℇ#

t#
 . (3.17) 

 

Figure 3.5: [Adapted from Ref. 91] Density of states of ideal Landau levels in case of zero (a) 

and nonzero (b) electric field.91 
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Under an electric field, the degeneracy in each Landau level has now been lifted, and the 

energy in each level now depends linearly on kx (Figure 3.5b).  Since the energy now has a 

momentum dependence, states now begin to drift in the x-direction.  The group velocity is given 

by  

w] =
R

ℏ

yl

yz‰
= ℇ

t
. (3.18) 

Therefore, a wavepacket with momentum kx is centered about position Ô£ = − z‰ℏ

~t
− ~ℇ

=#$
# with 

potential energy -Mℇ gz‰ℏ
~t

+ ~ℇ

=#$
#h, and kinetic energy 

R

!
|w]!. 

 To determine the transverse and longitudinal conductivities or resistivities, we need to 

determine the expression for current in this framework.  Begin by deriving the conductivity for a 

single free particle.  Given the drift velocity w] =
ℇ

t
,  

)] = −M?∑ ℇ

tz‰  (3.19) 

for n filled Landau levels.  The sum over kx just returns the degeneracy per Landau level, X =

	,-.
)Æ

.  Divide through by the area LW to get the current density  

/] =
V~Aℇ

)Æ
. (3.20) 

Given the relation between the current density and the electric field 

0 = 12  (3.21) 

where s is the conductivity tensor 

g
1]] 1]Á
−1]Á 1]]h,  (3.22) 

we know  

ℇ11⃗ = g0
ℇ
h → /⃗ = 3

~Aℇ

)Æ

0
4, (3.23) 
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so 

1]] = 0 and 1]Á =
~A

)Æ
  (3.24) 

or in terms of resistivity 

Ó]] = 0 and Ó]Á =
)Æ

~A
= q

~#A
.  (3.25)  

 

Ó]Á =
q

~#A
 is the exact resistivity seen on the quantum Hall plateau.  The prefactor n is called the 

filling factor, appropriately named for indicating the number of filled Landau levels.   

 

3.2.3  Edge Modes 

 As described above, in a fixed magnetic field, particles will move in cyclotron orbits, 

with all electrons orbiting in the same direction (still neglecting spin).  The particles at the edge, 

however, must collide with the boundary.  As they cannot bounce back in the other direction, 

they travel forward along the wall in a skipping motion described as chiral.  Particles at either 

edge travel in opposite directions so that in the absence of a longitudinal electric field, the total 

current vanishes.  Such edge states are well known at the interface between an integer QH 

system and vacuum.92 

 



 62 

 

Figure 3.6: [Adapted from Ref. 91] a) Potential similar to Equation 3.8. b) Available states are 

filled, setting the Fermi level. c) Applying a potential difference across the two sides of the 

sample. d) Accounting for the tilt of the Landau level under an electric field. e) Arbitrary 

potential across the interior of the sample. f) Generalizing the model to multiple levels. 

 

The chiral edge modes can also be derived from the quantum approach.  Figure 3.6a gives 

a picture of a potential generally similar to that described in Equation 3.8, flat within the interior, 

but rising sharply at the edges.  The Hamiltonian is still ¯̆ = R

!=
{̂Á

! + R

!
| g~t

=
h
!
gÔ + ℏz‰

~t
h
!
+

'(Ô).  

If the potential is smooth over distances on the order of the magnetic length út = π ℏ

~t
, 

then for each state, we can Taylor expand the potential around its position y´.   

'(Ô) = '(Ô′) + y∑

yÁ
(Ô − ÔL) + ⋯. (3.26) 

Dropping quadratic and higher terms and neglecting the constant term, we have a linear 

potential, the same as the energy from Equation 3.17 for Landau levels in an electric field.  The 

drift velocity in x is now given by 

only in a single direction, as shown in the figure. A particle restricted to move in a
single direction along a line is said to be chiral. Particles move in one direction on one

side of the sample, and in the other direction on the other side of the sample. We say
that the particles have opposite chirality on the two sides. This ensures that the net
current, in the absence of an electric field, vanishes.

We can also see how the edge modes appear in the

x

V(x)

Figure 15:

quantum theory. The edge of the sample is modelled by
a potential which rises steeply as shown in the figure.

We’ll work in Landau gauge and consider a rectangular
geometry which is finite only in the x-direction, which

we model by V (x). The Hamiltonian is

H =
1

2m

(

p2x + (py + eBx)2
)

+ V (x)

In the absence of the potential, we know that the wavefunctions are Gaussian of width

lB. If the potential is smooth over distance scales lB, then, for each state, we can Taylor
expand the potential around its location X . Each wavefunction then experiences the
potential V (x) ≈ V (X)+(∂V/∂x)(x−X)+. . .. We drop quadratic terms and, of course,

the constant term can be neglected. We’re left with a linear potential which is exactly
what we solved in Section 1.4.2 when we discussed Landau levels in a background

electric field. The result is a drift velocity in the y-direction (1.26), now given by

vy = − 1

eB

∂V

∂x

Each wavefunction, labelled by momentum k, sits at a different x position, x = −kl2B
and has a different drift velocity. In particular, the modes at each edge are both chiral,

travelling in opposite directions: vy > 0 on the left, and vy < 0 on the right. This
agrees with the classical result of skipping orbits.

Having a chiral mode is rather special. In fact, there’s a theorem which says that you

can’t have charged chiral particles moving along a wire; there has to be particles which
can move in the opposite direction as well. In the language of field theory, this follows

from what’s called the chiral anomaly. In the language of condensed matter physics,
with particles moving on a lattice, it follows from the Nielsen-Ninomiya theorem. The

reason that the simple example of a particle in a magnetic field avoids these theorems
is because the chiral fermions live on the boundary of a two-dimensional system, rather
than in a one-dimensional wire. This is part of a general story: there are physical

phenomena which can only take place on the boundary of a system. This story plays
a prominent role in the study of materials called topological insulators.

– 45 –

Let’s now look at what happens when we fill the available states. We do this by
introducing a chemical potential. The states are labelled by y-momentum !k but,

as we’ve seen, this can equally well be thought of as the position of the state in the
x-direction. This means that we’re justified in drawing the filled states like this:

EF

x

V(x)

From our usual understanding of insulators and conductors, we would say that the bulk

of the material is an insulator (because all the states in the band are filled) but the
edge of the material is a metal. We can also think about currents in this language. We

simply introduce a potential difference ∆µ on the two sides of the sample. This means
that we fill up more states on the right-hand edge than on the left-hand edge, like this:

EF
EF

To compute the resulting current we simply need to sum over all filled states. But, at
the level of our approximation, this is the same as integrating over x

Iy = −e

∫

dk

2π
vy(k) =

e

2πl2B

∫

dx
1

eB

∂V

∂x
=

e

2π!
∆µ (2.4)

The Hall voltage is eVH = ∆µ, giving us the Hall conductivity

σxy =
Iy
VH

=
e2

2π!
(2.5)

which is indeed the expected conductivity for a single Landau level.

The picture above suggests that the current is carried entirely by the edge states,

since the bulk Landau level is flat so these states carry no current. Indeed, you can
sometimes read this argument in the literature. But it’s a little too fast: in fact, it’s
even in conflict with the computation that we did previously, where (2.2) shows that all

states contribute equally to the current. That’s because this calculation included the
fact that the Landau levels are tilted by an electric field, so that the effective potential
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Let’s now look at what happens when we fill the available states. We do this by
introducing a chemical potential. The states are labelled by y-momentum !k but,

as we’ve seen, this can equally well be thought of as the position of the state in the
x-direction. This means that we’re justified in drawing the filled states like this:

EF
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of the material is an insulator (because all the states in the band are filled) but the
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simply introduce a potential difference ∆µ on the two sides of the sample. This means
that we fill up more states on the right-hand edge than on the left-hand edge, like this:
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EF

To compute the resulting current we simply need to sum over all filled states. But, at
the level of our approximation, this is the same as integrating over x

Iy = −e
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vy(k) =

e

2πl2B

∫

dx
1

eB

∂V

∂x
=

e

2π!
∆µ (2.4)

The Hall voltage is eVH = ∆µ, giving us the Hall conductivity

σxy =
Iy
VH

=
e2

2π!
(2.5)

which is indeed the expected conductivity for a single Landau level.

The picture above suggests that the current is carried entirely by the edge states,

since the bulk Landau level is flat so these states carry no current. Indeed, you can
sometimes read this argument in the literature. But it’s a little too fast: in fact, it’s
even in conflict with the computation that we did previously, where (2.2) shows that all

states contribute equally to the current. That’s because this calculation included the
fact that the Landau levels are tilted by an electric field, so that the effective potential
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and the filled states looked more like this:

EF
EF

Now the current is shared among all of the states. However, the nice thing about the
calculation (2.4) is that it doesn’t matter what shape the potential V takes. As long
as it is smooth enough, the resulting Hall conductivity remains quantised as (2.5). For

example, you could consider the random potential like this

EF
EF

and you still get the quantised answer (2.4) as long as the random potential V (x)
doesn’t extend above EF . As we will describe in Section 2.2.1, these kinds of random

potentials introduce another ingredient that is crucial in understanding the quantised
Hall plateaux.

Everything we’ve described above holds for a single Landau level. It’s easily gener-
alised to multiple Landau levels. As long as the chemical potential EF lies between
Landau levels, we have n filled Landau levels, like this

EF

Correspondingly, there are n types of chiral mode on each edge.

A second reason why chiral modes are special is that it’s hard to disrupt them. If
you add impurities to any system, they will scatter electrons. Typically such scattering

makes the electrons bounce around in random directions and the net effect is often that
the electrons don’t get very far at all. But for chiral modes this isn’t possible simply
because all states move in the same direction. If you want to scatter a left-moving

electron into a right-moving electron then it has to cross the entire sample. That’s a
long way for an electron and, correspondingly, such scattering is highly suppressed. It
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w] = 	
R

~t

y∑

yÁ
. (3.27) 

Each wavefunction, denoted by its kx, is centered about a different ÔL = z‰ℏ

~t
 with a different drift 

velocity.  Within the interior, 
y∑

yÁ
 is negligible, and electron motion is suppressed.  At each edge, 

the modes are chiral, with vx > 0 at the top (positive y edge) and vx < 0 on the bottom. 

 Now consider what happens as the available states are filled (Figure 3.6b) by introducing 

a chemical potential and thereby setting the Fermi level, EF.  Though the states are labelled by 

their x-momentum, we have seen they can also be thought of in terms of their position in y.  In 

(Figure 3.6b), it is clear the states in the interior are insulating because all the states in the band 

are filled.  The edges, however, lie near the Fermi level, and can therefore carry current.  If we 

introduce a potential difference, Dµ, on the two sides of the sample (Figure 3.6c), we can now 

fill more states on one side versus the other.  The current is given by summing over all filled 

states, or approximating by integrating over y 

)] = −M ∫
;z

!\
w](s) =

~#t

q
∫ ñÔ

R

~t

y∑

yÁ
= ~

q
∆}.  (3.28)  

The Hall voltage, 'Í =
∆è

~
, then gives the conductivity 

1]Á =
ø‰
67

= ~#

q
, (3.29) 

which is equivalent to the Hall conductance found in Equation 3.24 for a single Landau level.   

 This picture implies all current is carried by the edges since in the bulk, the Landau level 

is flat, but this is not quite accurate.  Consider Figure 3.6d, where we have accounted for the 

tilting of the Landau level due to the electric field or Figure 3.6e, in which V(y) takes on a 

random form.  As long as V(y) is smooth over length scales on the order of lB and does not 
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extend above EF, though, Equation 3.29 still holds and current is still carried by the edge modes.  

This is vital to the robustness of the QHE.   

 Extending to multiple Landau levels, as long as EF lies between two Landau levels such 

that we have n filled levels, we can expect a picture like Figure 3.6f.  In this case, there are n 

chiral modes on each edge.  These chiral modes are incredibly robust.  Since all states on an edge 

move in the same direction, in order to scatter a left-moving electron into a right-moving 

electron, it would have to traverse the width of the sample.  The width is very large, and so 

scattering is largely suppressed.  Chiral modes, then are immune to scattering by impurities.   

 

3.2.3  The Role of Disorder and Laughlin’s Gedankenexperiment  

 The derivations for the QHE have so far neglected disorder.  The origin of the quantized 

conductance plateaus, though, is partially due to the inherently imperfect nature of experimental 

samples.  To understand the role of disorder in the QHE, consider the gedankenexperiment 

(thought-experiment) constructed by R.B. Laughlin in 1981.93  Laughlin proposed that since sxy 

is quantized, it should be impervious to the details of the sample geometry and one should be 

able to smoothly deform the rectangular shape.  Imagine taking the conducting channel from the 

previous section and wrapping it around itself into a circular ribbon (Figure 3.7)94 so that it 

forms a loop with circumference L.  Let the axes be such that the x-axis is along the 

circumference of the loop, and the y-axis is parallel to the axis of the cylinder.  There is still an 

external magnetic field normal to the surface, and the Fermi level still lies in a gap between 

Landau levels with n filled levels below it.  If a persistent current flows around the loop, a 

voltage difference arises between the two edges of the ribbon due to the Hall effect. 
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Figure 3.7: a) [Adapted from Ref. 94] and b) [Adapted from Ref. 95] Laughlin’s 

gedankenexperiment. 

 

 Including the effects of the transverse electric field ℇ = ∑

.
, we regain the Hamiltonian 

from Equation 3.16 for the inclusion of a transverse electric field in the conductor 

¯̆ = R

!=
{̂Á

! + R

!
| g~t

=
h
!
(Ô − Ô£)! + MℇÔ	 + R

!
| ℇ#

t#
, (3.30) 

with again, Ô£ = − z‰ℏ

~t
− ~ℇ

=#$
#, as the guiding center.  Since the values of  kx are linearly spaced 

apart in steps  
!\

/
, the spacing of the locations of the wavefunctions in y is 

q

~t/
.   

 In this ring geometry, the states extend all around the loop in x and connect back to 

themselves.  Therefore any wavefunction solution must satisfy J(Q, Ô) = J(Q + ï, Ô).  This 

condition becomes difficult to satisfy if we now apply a magnetic flux DF through the center of 

the ring.  Even if the flux does not produce a magnetic field at the ribbon, it affects the 

Hamiltonian by adding a vector potential ∆¸ = ∆)

/
Q!.  The result is a dynamical phase that adds a 

factor of MN~∆8]/ℏ to the wavefunctions.  This can be treated as a gauge transformation.94  In 
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it into a circular ribbon so that along the x-direction it forms a loop of circumference

L (Fig. 3.5). Its surface continues to be penetrated by magnetic field B at normal

incidence, and its Fermi level lies in a gap with n filled Landau levels below it. (This

may seem like a fanciful geometry, but the Corbino disks that we consider later are in

fact quite similar.) A persistent current I can flow around the loop, which would lead

to a voltage di↵erence V between the two edges of the ribbon from the Hall e↵ect.

Figure 3.5: Laughlin’s gedankenexperiment, from [19].

To include the e↵ect of the transverse electric field E = V/W in the ribbon

interior, we add the term eEy to equation 3.2. With some algebra, we can rearrange

this to once again be a simple harmonic oscillator Hamiltonian,

Ĥ =
1

2m
p̂y

2 +
1

2
m

✓
eB

m

◆2

(y � y0)
2 + eEy0 +

1

2
m
E

2

B2
, (3.3)

with it its center at

y0 = �
~kx
eB

�
mE

eB2
.

This quantity y0 is known as the guiding center. Since the available choices of kx are

spaced linearly in steps of 2⇡/L, the y locations of the states are spaced by h/eBL.

In this new geometry, the states are extended all the way around the loop in the

x-direction and connect back to themselves, so that any solution  must have the

property that  (x, y) =  (x+L, y). This presents a problem if we now thread a flux

�� through the center of the ribbon. Even if it it creates no physical magnetic field at

a b

x

y
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order to satisfy the connectivity condition on the wavefunctions, however, the only allowed 

transformations are those where ∆Φ = ? q

~
= ?Φ£, where n is an integer. 

 As a gauge transformation, this operation must map the system back to itself.  In terms of 

the Hamiltonian, this equates to adding an extra term to the vector potential so that MËÔ →

MË gÔ − ∆)

t/
h, which only changes the guiding center of the cyclotron orbits.  Adding a flux of 

1F0 moves the state by 
q

~t/
, which resolves how to satisfy J(Q, Ô) = J(Q + ï, Ô):  The addition 

of a flux quantum simply moves the wavefunction over to the neighboring state in the y 

direction.   

 If n Landau levels are filled, n electrons are moving along the ring, and n electrons are 

transferred from one edge to the other.  The current carried along a single channel is given in 

terms of the drift velocity calculated in Equation 3.18, ) = M ℇ
t
.  In his 1998 Nobel Prize lecture95, 

Laughlin proves that the current operator is formally the derivative of the Hamiltonian with 

respect to the vector potential so that by the Hellman-Feynman theorem (
;l 
;…

= 〈J… '
;Í̆ 
;…
'J…〉 ) 

the current is just the adiabatic differentiation of the energy with respect to the magnetic flux, 

) = ;l

;)
.  If the loop is large enough so that Aharonov-Bohm oscillations are suppressed, and the 

current changes negligibly as the flux is inserted, the adiabatic derivative can be replaced by a 

differential, ) = ∆l

∆)
.  If ∆i = ?M' and ∆Φ = q

~
, then the Hall conductance is recovered 

ø

∑
= A~#

q
= 1]Á. (3.31) 

Through this geometry of connected extended states, the Hall conductance was obtained without 

any details about the edge modes;  it was an inevitable feature of the Hamiltonian.   
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 Now consider what happens when disorder is introduced.  From general perturbation 

theory, any perturbation that does not preserve symmetry will break degeneracies.  Therefore, we 

expect that adding a small amount of disorder will split the degeneracy of the Landau levels.  

Indeed, when disorder is included in the model, the density of states of the Landau levels are no 

longer delta functions; they are now broadened due to spatial variations.  As long as the width of 

the levels is small relative to their separation in energy, though, we still obtain the same 

quantized conductance. 

 If the disorder perturbation is strong enough, however, many of the extended quantum 

states will become localized, restricted to lie within some region in y.  Figure 3.8a is an example 

of a segment of the ribbon with a local maximum and minimum in the potential due to 

impurities.  Particles in the vicinity of the maximum move anti-clockwise around it, and those 

near the minimum move clockwise around it.  In both cases, the particles are trapped, and cannot 

contribute to charge transfer.  Equipotentials that cross from one side of the sample to the other 

are uncommon, but they are guaranteed to exist at the edge of the sample.  Figure 3.8c shows the 

new density of states in terms of the localized and extended states.  States at the far ends of a 

band are localized, and there may even be a finite density of states between Landau levels.  Only 

states near the center of a band are extended. 
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Figure 3.8: a) [Adapted from Ref. 91]  A portion of the ribbon from Laughlin’s 

gedankenexperiment including disorder.  Particles circle local maxima and minima in the 

interior, so that only states on the edge are continuous around the entire ribbon.  b) [Adapted 

from Ref. 94] The shift of wavefunctions along y will skip over localized states caused by 

disorder.  c) [Adapted from Ref. 91] The density of states become broader in the presence of 

disorder, leading to a combination of localized states in the interior and extended states around 

the edges. 

 

Within the localized states, the self-connecting phase condition does not apply, and 

continuous gauge transformations are allowed.  Therefore, when flux is added, the states do not 

move; instead they only change in phase.93  Only the extended states are able to move charge 

from one side of the sample to the other, so the “conveyer-belt” of moving electrons will simply 

skip over these localized states, and the overall result for conductivity is the same (Figure 3.8b).   

To understand how this leads to plateaus in the conductance, consider the case if all 

extended states in a given Landau level are filled and B is decreased for a fixed n.  Each Landau 

level can accommodate fewer electrons (N~B), so the Fermi level increases.  Unlike the no-
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where we used the fact (1.34) that, in the absence of a potential, [X,H ] = [Y,H ] = 0,

together with the commutation relation [X, Y ] = il2B (1.35). This says that the centre
of mass drifts in a direction (Ẋ, Ẏ ) which is perpendicular to ∇V ; in other words, the
motion is along equipotentials.

Now consider what this means in a random potential with various peaks and troughs.

We’ve drawn some contour lines of such a potential in the left-hand figure, with +
denoting the local maxima of the potential and − denoting the local minima. The
particles move anti-clockwise around the maxima and clockwise around the minima. In

both cases, the particles are trapped close to the extrema. They can’t move throughout
the sample. In fact, equipotentials which stretch from one side of a sample to another

are relatively rare. One place that they’re guaranteed to exist is on the edge of the
sample.

The upshot of this is that the states at the far edge of a band — either of high or
low energy — are localised. Only the states close to the centre of the band will be

extended. This means that the density of states looks schematically something like the
right-hand figure.

Conductivity Revisited

For conductivity, the distinction between localised and extended states is an important
one. Only the extended states can transport charge from one side of the sample to the

other. So only these states can contribute to the conductivity.

Let’s now see what kind of behaviour we expect for the conductivity. Suppose that

we’ve filled all the extended states in a given Landau level and consider what happens
as we decrease B with fixed n. Each Landau level can accommodate fewer electrons, so
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disorder case with delta function density of states, where electrons would jump up to the next 

Landau level, electrons simply start occupying the localized states instead.  The localized states 

do not contribute to the conductivity, though, so the conductivity is unchanged, resulting in a 

plateau.  This may seem to contradict the original derivation assuming all states in the Landau 

level contribute to the current, but R.E. Prange96 found that the current carried by the extended 

states increases in an exact amount to compensate for the lack of current by the localized states.  

Therefore the conductivity remains quantized even in the presence of disorder.    

 

3.3  Topological Invariants 

3.3.1  The TKNN Model of the Quantum Hall Effect 

 To distinguish the quantum Hall state from ordinary insulators, in 1982, Thouless, 

Kohmoto, Nightingale, and den Nijs (TKNN) formulated an explanation of the QHE in terms of 

topology.85  Their approach applies the Kubo formula, an expression describing the linear 

response of an observable to a time-dependent perturbation,34,97 to calculate the Hall conductivity 

of a 2D system.  Gapped band structures of a 2D system can be classified topologically by 

grouping classes of the Bloch Hamiltonian that can be continuously deformed into one another 

without closing the band gap.  These classes are characterized by a topological invariant called 

the Chern number.   

   Begin with the Hamiltonian from Equation 3.13, ¯̆ = R

!=
{̂Á

! + R

!
| g~t

=
h
!
gÔ + ℏz‰

~t
h
!
+

'(Ô), and label the many-electron eigenstates as |ΨA⟩, with energies En.  In the ground state, 

|Ψ£⟩, no current flows until an electric field ℇÁ is applied.  Then, perturbation theory can be used 

to determine the resulting current density jx and conductivity sxy.  As before, the perturbation to 

the Hamiltonian is MℇÔ, so to first order, the ground state is shifted by 
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|Ψ£⟩ → |Ψ£⟩ + ∑ 〈<=|~ℇÁ|<Æ〉

lÆVl=
A>£ |ΨA⟩ = |Ψ£⟩+ ∑

|<=⟩⟨<=|

lÆVl=
A>£ MℇÔ|Ψ£⟩. (3.32) 

The current density is then 

〈a]〉 = g⟨Ψ£| + ⟨Ψ£|MℇÔ∑
|<@⟩⟨<@|

lÆVl@
=>£ h	A]̂ g|Ψ£⟩ + ∑

|<=⟩⟨<=|

lÆVl=
A>£ MℇÔ|Ψ£⟩h. (3.33) 

Dropping ℇ! terms to keep the calculation in first order, and since 〈Ψ£|A]̂|Ψ£〉 = 0 (no current 

flows in the unperturbed ground state), 

〈a]〉 = Mℇ∑
〈<Æ|Á|<=〉〈<=|B̂‰|<Æ〉W〈<Æ|B̂‰|<=〉〈<=|Á|<Æ〉

lÆVl=
A>£ . (3.34) 

We can then put everything in terms of the current density by substituting the definition AÁ̂ =

~

=
{̂Á into the commutation relation C¯̆, ÔD = − Nℏ

=
{̂Á, and 

〈ΨAEC¯̆, ÔDEΨ£〉 = 〈ΨA|(iA − i£)Ô|Ψ£〉 = 〈ΨA '−
Nℏ

~
AÁ̂' Ψ£〉. (3.35) 

Substituting Equation 3.35 back into Equation 3.34 and dividing through by ℇ, we have the Hall 

conductivity in the form of a current-current correlation function98 

1]Á = −Œℏ∑
〈<Æ|B̂‰|<=〉〈<=|B̂‰|<Æ〉W〈<Æ|B̂‰|<=〉〈<=|B̂‰|<Æ〉

(lÆVl=)#
A>£ . (3.36) 
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Figure 3.9: [Adapted from Ref. 98] Quantum Hall systems with realistic boundary conditions a) 

A simple Hall bar with source and drain on left and right and voltage leads on the top and 

bottom. b) An equivalent geometry where current and voltage leads are replaced by loops of the 

same material as the Hall bar with flux threaded through each.  

 

From here, Avron and Seiler related the TKNN formulation to Laughlin’s 

gedankenexperiment for a real Hall bar geometry99,100  such as that in Figure 3.9a.98  Figure 3.9b 

is an equivalent situation, in which the current and voltage elements are replaced with loops of 

the same material as the bar.  Two different fluxes are threaded through the loops, FJ through the 

current loop and FV through the voltage loop.101  Now, the application of the electric field ℇ is 

achieved by uniformly increasing FV to produce an electromotive force, and the resulting current 

is seen by observing FJ.  Again, we can use the relation ) = ∆l

∆)
, to find the current density 

operators A]̂ and AÁ̂ by A]̂ =
yÍ̆

y)F
 and AÁ̂ =

yÍ̆

y)G
.  By first order perturbation theory we have 

Hy<Æ

y)F
I = ∑

〈<=H
J7̆
JKF

H<Æ〉

lÆVl=
A>£ |ΨA⟩ and 'y<Æ

y)G
I = ∑

〈<=H
J7̆
JKG

H<Æ〉

lÆVl=
A>£ |ΨA⟩ .  (3.37) 
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Plugging back into Equation 3.36, and using the identity operator ∑ |ΨA⟩⟨ΨA|A , the Hall 

conductivity becomes 

1]Á = Œℏ �Ly<Æ

y)G
H y<Æ

y)F
I − Ly<Æ

y)F
H y<Æ

y)G
IÜ.  (3.38) 

Just as in Laughlin’s original gedankenexperiment, the system is invariant to changes in 

either flux by 
q

~
.   This is equivalent to saying FJ and FV are periodic, and (FJ, FV) space is 

shaped like a toroid with surface area 
q#

~#
.  Integrating over all (FJ, FV) space, we find the flux-

averaged value for the Hall conductance 

1]Á = Œℏ ~#

q#
∫ ñΦM ∫ ñΦ∑

q/~
£

q/~
£

�Ly<Æ

y)G
H y<Æ

y)F
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y)F
H y<Æ

y)G
IÜ.  (3.39) 

We can rewrite the integrand as the curl of the vector 

R

!
�Ly<Æ

y)F
HΨ£I− LΨ£H

y<Æ

y)F
I , Ly<Æ

y)G
'Ψ£I− LΨ£'

y<Æ

y)G
IÜ = −ŒIm�LΨ£H

y<Æ

y)F
I , LΨ£'

y<Æ

y)G
IÜ, (3.40) 

so 

1]Á =
~#

!\q
∫ ñ!ΦIm(∇) × ⟨Ψ£|∇)Ψ£⟩). (3.41) 

Applying Stoke’s theorem, which relates a surface integral to an integral over a curve by 

∬∇ × Ê ∙ ñP = ∮Ê ∙ ñR, we have 

1]Á =
~#

!\q
Im∮(⟨Ψ£|∇)Ψ£⟩ ∙ ñS). (3.42) 

The term	Im∮(⟨Ψ£|∇)Ψ£⟩ ∙ ñS) is the negative of Berry’s phase for a path around the 

border of F space.  Berry’s phase102 appears in cyclic adiabatic evolutions.  If we start with a 

Hamiltonian based on a set of parameters, then vary the parameters, but ultimately bring them 

back to their starting values, we have traced out a closed path in the space of those parameters.  

The adiabatic theorem states that if we started out in the ground state, we will end up back at the 

ground state, only with a change in phase   
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|J£⟩ → MNT|J£⟩ (3.43) 

This change in phase becomes important in considering the interaction between one state 

that went through the adiabatic change and another that did not.  The inclusion of phase means 

that now, interference between the two states, whether constructively or destructively, could 

have physical meaning.  There are two contributions to the phase MNT: a dynamical phase MVNlΩ/ℏ, 

present for every eigenstate, even the ones that do not go through the change; and Berry’s phase, 

the phase gained after taking a closed path in parameter space.  Berry’s phase is independent of 

the time taken to undergo the change in parameters, but does depend on the path taken through 

parameter space.   

In Equation 3.42, the path around the border of F space must be a single-valued and 

therefore an integer multiple of 2p in order to map around the loop back onto the original values.  

Thus, we recover the Hall conductance 

1]Á =
~#

!\q
(2U?) = A~#

q
. (3.44) 

 

3.3.2  The Chern Number 

 The important result of the TKNN formulation is that the quantized Hall conductance is a 

fundamental property of the system.  The value of n in Equation 3.44 is invariant to smooth 

changes of the Hamiltonian, and therefore defines an equivalence class for gapped Hamiltonians.  

Thus, n is a topological invariant.100 

As discussed in Section 3.1, two-dimensional objects are classified in topology by their 

number of holes because two surfaces with the same number of holes can be smoothly deformed 

into one another.  The number of holes is therefore the topological invariant for the class.  The 

Chern number, or Chern invariant, was introduced by mathematician Shiing-Shen Chern in 1946 
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to characterize classes of complex vector bundles.103  Chern argued that the genus of a surface 

can be found by integrating the local curvature over its entire area.  In terms of the Hall 

conductivity in the TKNN formulation, this is similar to integrating Berry’s curvature over the 

area of parameter space (Equation 3.41) or integrating Berry’s phase around the area of 

parameter space (Equation 3.42).   

In real space, the Chern number defines a class of gapped Hamiltonians, and a system 

cannot smoothly deform between regions of different Chern numbers.  In order to move across 

the boundary, the gap with one value of n must close and then open as a gap with a different 

value of n.  At the boundaries, though, gapless conducting states must exist.  This leads to a 

unique feature of these states called bulk-boundary correspondence, which relates the topological 

structure of the bulk to the presence of gapless chiral boundary modes.  Bulk-boundary 

correspondence states that the number of chiral edge modes is equal to the difference in the 

Chern number across the interface104 

X~;V~ = ∆?. (3.45) 

This is readily seen at the edge of a QH system, where the transition from Chern number (or 

filling factor) n to vacuum (Chern number of 0) leads to n 1D chiral edge modes.  This statement 

holds for any shape or local details of the Hall bar, demonstrating how the topological nature of 

the QHE relates to real space and verifies its robustness.   

 

3.4  Topological Insulators: The Quantum Spin Hall Effect 

 While the QHE is a phenomenon of rich physics, the required low temperatures and high 

magnetic fields are experimentally demanding.   It was therefore desirable to find equivalent 
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systems with nontrivial Chern numbers or other topological invariants.  The class of materials 

that fulfill these criteria are known as topological insulators. 

 

3.4.1  Time Reversal Symmetry 

 One property that is crucial to achieving topological invariants without high magnetic 

fields is time-reversal symmetry (TRS).  Time reversal symmetry essentially requires that a 

system be identical under the reverse flow of time.  Let J(W, Ã) = MV
[Ä—
ℏ J(W, 0) be the time 

evolution of the wavefunction y(x,0), where MV
[Ä—
ℏ  is the time evolution factor.  Then y(x,-t) is 

the time-reversed conjugate of y(x,t), found by running the system with time flowing backwards, 

or by reversing all the velocities or momenta in the system.105  In the absence of spin, time 

reversal, denoted by the operator EX: Ã → −Ã, effectively turns the wavefunction to its complex 

conjugate 

EXJ(W, Ã) = J(W, −Ã) = J∗(W, Ã). (3.46) 

When accounting for spin, EX = ä̆1Á, where ä̆ is the complex conjugation operator, and sy is the 

Pauli spin operator 

1Á = g0 −Œ
Œ 0

h . (3.47) 

It can be shown that the Hamiltonian is invariant under EX  whether spin is included or not.105  The 

time reversal operator also commutes with the Hamiltonian as a consequence of energy 

conservation.   
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3.4.2  The Haldane Model 

 In 1988, F.D.M. Haldane worked out a model for achieving quantized Hall conductance, 

in other words a nonzero Chern number, in the absence of a magnetic field.106  He formulated his 

model using graphene, a 2D system of carbon atoms in a hexagonal lattice (Figure 3.10).  The 

hexagonal lattice of graphene is often broken down into two triangular sublattices, A and B.  The 

resulting band structure has two special points in reciprocal space, K and K´=-K, located at the 

corners of the Brillouin zone.  At K and K´, the conduction and valence bands touch, and near 

these points, the electronic dispersion resembles the linear dispersion of massless relativistic 

particles, described by a 2D massless Dirac Hamiltonian 107,108   

¯̆ = ℏwxZ ∙ [,  (3.48) 

where vF is the Fermi velocity, s are the Pauli matrices in x and y, and q = k-K is the momentum 

relative to the K or K´ point.   

 

Figure 3.10: [Adapted from Ref. 106] Hexagonal lattice of graphene.  The A and B sublattices 

are denoted by the closed and open circles, respectively.   

 

The degeneracy of the Dirac points is protected by both inversion and time-reversal 

symmetries.  Breaking the symmetries would allow the degeneracy to be lifted.  For example, 
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QHE may also result from breaking of time-reversal
symmetry (i.e., magnetic ordering) without any net mag-
netic fiux through the unit cell of a periodic 2D system.
In this case, the electron states retain their usual Bloch
state character.
The model presented here is also interesting in that if

its parameters are on a critical line at which its ground
state changes from the normal semiconductor state to
this new type of QHE state, its low-energy states simu-
late a "(2+1)-dimensional" relativistic quantum field
theory exhibiting the so-called "parity anomaly" and a
(2+1)-D analog of "chiral" fermions without the
opposite-chirality anomaly-canceling partners that usu-
ally accompany them in lattice realizations of field
theories ("fermion doubling" ).
In the zero-temperature limit, the transverse conduc-

tivity o "3' of a periodic 2D electron system with a gap in
the single-particle density of states at the Fermi level
takes quantized values ve /h, where v is generally ra-
tional, but can only take i nteger values in the absence of
electron interactions. This property of a pure system is
stable against sufficiently weak disorder effects. Since
a" is odd under time reversal, a nonzero value can only
occur if time-reversal invariance is broken.
In the usual QHE, the gap at the Fermi level results

from the splitting of the spectrum into Landau levels by
an external magnetic field. The scenario considered here
is different, and involves a 2D semimetal where there is a
degeneracy at isolated points in the Brillouin zone be-
tween the top of the valence band and the bottom of the
conduction band, that is associated with the presence of
both inversion symmetry and time-reversal invariance.
If inversion symmetry is broken, a gap opens and the sys-
tem becomes a normal semiconductor (v=0), but if the
gap opens because time-reversal invariance is broken the
system becomes a v=+ 1 integer QHE state. If both
perturbations are present, their relative strengths deter-

,bg qb, ~,

FIG. 1. The honeycomb-net model ("2D graphite") showing
nearest-neighbor bonds (solid lines) and second-neighbor bonds
(dashed lines). Open and solid points, respectively, mark the A
and 8 sublattice sites. The Wigner-Seitz unit cell is con-
veniently centered on the point of sixfold rotation symmetry
(marked "+")and is then bounded by the hexagon of nearest-
neighbor bonds. Arrows on second-neighbor bonds mark the
directions of positive phase hopping in the state with broken
time-reversal invariance.

mine which type of state is realized.
To model a 2D semimetal, I use the "2D graphite"

model investigated previously by Semenoff as a possible
lattice realization of a (2+I)-D field theory with the
anomaly. 2D graphite has the honeycomb net structure,
consisting of two interpenetrating triangular lattices
("A" and "8"sublattices) with one lattice point of each
type per unit cell (Fig. 1). A 2D inversion (i.e., a rota-
tion in the plane by tr) interchanges the two sublattices.
Since spin-orbit coupling effects will not be included, the
electron spin will (for the moment) be suppressed.
Semenoff investigated the tight-binding model with

one orbital per site and a real hopping matrix element t ~

between nearest neighbors on different sublattices, and
also considered the effect of an inversion-symmetry-
breaking on-site energy +M on /I sites and —M on 8
sites. The model has point group Cs„(M=O) or C3„
(MAO). In this original version of the model, time-
reversal invariance is present, and Semenoff found com-
plete cancellation of the anomaly in the M =0 model due
to fermion doubling, and normal semiconductor behavior
for MAO.
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inversion symmetry is broken if the two atoms in the unit cell are inequivalent.  If we change the 

relative energies of the two sublattices by adding a small momentum term ℏwx4\, then near K, 

we regain a massive term in z, so that the full Hamiltonian becomes 

¯̆ = ℏwxZ ∙ [+|1\,  (3.49) 

where | = ℏwxä\.  This changes the spectrum from being completely linear, gapless, and 

therefore massless, to having an effective mass at K.  Furthermore the dispersion i(Z) =

±]|ℏwxZ|! + |! now has an energy gap of 2|||.  Time-reversal symmetry requires the Dirac 

point at K´ to also have a mass with the same magnitude and sign m´ = m.  From a topological 

perspective, when integrating the Berry curve over the Brillouin zone, contributions from K and 

K´ cancel, and the result is an ordinary insulator.109 

 Instead of breaking inversion symmetry, Haldane envisioned lifting the degeneracy by 

breaking the time-reversal symmetry.106  He realized it was possible to break time-reversal 

symmetry with a magnetic field that is zero on average, but respects the full symmetry of the 

lattice, so that the masses at K and K´ are not equal.  In this case, the system is not a trivial 

insulator, but rather a quantum Hall state with quantized conductance.   

 

 



 78 

 

Figure 3.11: [Adapted from Ref. 110] Due to the periodic conditions of the Brillouin zone, the 

unit vector must wrap around the sphere an integer number of times. 

 

 The Chern number can distinguish between similar or seemingly-identical band structures 

by calculating the integral of the Berry curvature in the Brillouin zone.  Due to the periodic 

boundary conditions of the Brillouin zone, the unit vector dk must wrap around the unit sphere 

an integer number of times, and the number of trips around gives the Chern number (Figure 

3.11).110  When m = m´ = 0, momentum is confined to the x-y plane, with a unit and opposite-

direction winding around each Dirac point.  For small but finite m,m´, momentum is finite 

everywhere and q(K) hits zmax or zmin (the north or south poles of the unit sphere) depending on 

the sign of m.  Each Dirac point, then, contributes ± ~#

!q
 to sxy.104  In the case of m = m´, the 

contributions cancel. When m =- m´, however, they add, resulting in a nonzero, quantized Chern 

number and full quantum Hall edge state behavior without a net magnetic field.   

 Haldane concluded his paper by emphasizing his proof was simply a toy model, “unlikely 

to be directly physically realizable,”106 but revived interest in his ideas have led to proposals for 

its realization in buckled hexagonal lattices such as silicene110 and iron-based honeycomb 
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and so will be tiny for realistic laboratory fields. Later, I will discuss
ways in which this number can be improved by several orders of
magnitude in the lab. D and Dh,w add, or compete, in the two valleys
such that the gap in the two valleys, are DK+~D+Dh,w .

Chern number and phase diagrams. The quantum anomalous Hall
(QAH) phase is characterised by a Chern number of 1 (Mod(2)),
where the Chern number is the integral of the Berry curvature over
the Brillouin zone20. For our Hamiltonian Eq. [1], it takes the
particularly simple form3,22
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The Chern number discriminates between ostensibly similar, or

even identical, band-structures, by calculating the integral of the
Berry curvature23 over the Brillouin zone. For two component
Hamiltonians, such as Eq. [5], the Chern number calculation is read-
ily visualised across the Brillouin zone. By considering the orienta-
tion of the unit vector ~̂d ~k

& '
at each point, and specifically, noting

how many times the vector wraps around the unit sphere, one can
immediately ‘read off’ the Chern number. In Fig. 2, I have plotted the
unit vector ~̂d ~k

& '
over the hexagonal lattice Brillouin zone for the

original Haldane model with no mass gap and finite flux (C 5 1), as
well as Eq. [5] with D 5 0.2t, w 5 0, which is a trivial insulator (C 5
0), and D 5 0, but w /w 0 5 p /2, h 5 p /2, which is again a Chern
insulator (C 5 1), being in the same topological class as the Haldane

model. Remarkably, the bulk bandstructure in all three cases are
nearly identical, being simply essentially graphene24, and so cannot
be distinguished by viewing the bandstructure alone.

In Fig. 3 is shown the Chern number phase diagram of
Hamiltonian Eq. [1], as a function of in-plane field orientation h
(as defined in Fig. 1). At D 5 0, the Chern number is 61 for almost
the entire spectrum of field orientations. This can be understood by
considering Fig. 1. For all h except p n/3, there is a positive flux
passing through either one or two plaquettes in the unit cell, and a
negative flux passing through two or one, such that the total flux is
always zero. The positive fluxes induce a positive chirality about the
triangular plaquettes in one direction, while the negative flux induce
a negative chirality. Therefore we expect there to be a net chirality
inducing a chiral mode at each edge of the material. A topological
phase transition can be induced by varying the orientation of the in-
plane magnetic field. It is also worth noting that at D 5 0, with finite
t9 , t/3, and at zero temperature, the system is a quantum anomalous
Hall insulator for any nonzero magnetic field magnitude, so long as
the field orientation is not precisely h 5 pn/3.

As can be seen from Fig. 1, the field orientation angles h 5 p n/3 are
special in that a single triangular plaquette lies in a plane parallel to
the field and thus sees no net flux through it. The sine dependence of
the critical gap can be understood by noting that the flux passing
through a plaquette goes as the sine of the angle between the pla-
quette and the field. For a decreased flux through a plaquette, the
critical electric field to destroy the chiral edge modes is also
decreased.

Although clearly distinct from the Haldane model in its flux con-
figuration, the buckled honeycomb lattice in an in-plane magnetic
field is topologically equivalent to the Haldane model for ranges of
magnetic field orientations, as both systems have a Chern number of
one.

Effects of spin-orbit coupling. So far I have completely neglected
spin. The Chern numbers reported in the phase diagram Fig. 3 for a
fermionic system are per spin. For spin degenerate systems such as
that considered here, each spin species will co-propagate. The Zee-
man splitting will not affect the Chern number, but if it is larger than
the flux gap it will move the bulk bands of one spin species across the
Fermi energy, thus developing a Fermi surface. Experimentally, this
is an added complication, and will be addressed briefly toward the
end of the paper. Therefore, rather than having a Chern number in
Hamiltonian Eq. [1] of 1, for a spinful fermionic system, there is an
extra factor of 2 for the spin degeneracy, and the Chern number is in
fact 2, corresponding to a n 5 2 quantum Hall effect, with 2 filled
Landau levels. I emphasise that this is not a quantum spin Hall
insulator, where the total Chern number is C 5 1 2 1 5 0 and the
two spin species counter-propagate, but is a doubled Haldane model,
or a quantum Hall effect with filling factor 2. Back scattering on the
edges is still prohibited in this model, as there is only one direction of
propagation on the edge.

Figure 2 | The unit vector d̂ ~k
& '

, of Eq. [4], plotted across the honeycomb

lattice Brillouin zone. Due to the periodic boundary conditions of the
Brillouin zone, the unit vector must wrap the sphere an integer number of
times, which gives the Chern number. In all three figures, t9 5 0.1t. In (a),D
5 0.2t, and so the system is a trivial insulator. The unit vector clearly never
visits the north pole, but wraps and then un-wraps the lower hemisphere.
In (b),D5 0, w 5 p /2w 0, and h 5 p /2, so the system is a Chern insulator. In
(c) is shown the Haldane model. In the later two cases, it can be seen that
the vector visits both the north and south poles once only, giving a Chern
number of 1. The bottom figure shows the representation of the unit vector
in pseudo-spin space, together with the corresponding colour coding of
the s z component of each vector.

Figure 3 | Phase diagram for a spinless buckled honeycomb lattice in an
in-plane magnetic field (such that w/w0 5 p/2), and out-of-plane electric
field, where D 5 El. The angle p /2 (p /3) corresponds to the upper left
(right) geometry in Fig. 1.
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ferromagnetic insulators.111  In 2014, Jotzu et al. were able to experimentally demonstrate a 

Haldane insulator in ultracold fermionic atoms in a periodically modulated optical honeycomb 

lattice.112   

 

3.4.3  Z2 Topological Invariant 

 The Hall conductivity is odd under time-reversal symmetry, and therefore the 

topologically nontrivial situation described above can only be obtained by breaking TRS.  The 

spin-orbit interaction, however, allows for a different topological class of insulating band 

structures that preserves TRS.113,114  When graphene was experimentally discovered in 

2004,115,116  interest in the Haldane model was renewed.  Building on theoretical models of the 

spin Hall effect,117–119 the quantum spin Hall effect (QSHE) (Section 3.4.4) was 

discovered,113,114,120,121 which can be modeled as two complementary Haldane models.86,104 

This new topological class is largely dependent on spin-orbit coupling.  The spin-orbit 

interaction is a relativistic effect connecting a particle’s spin with its motion inside a potential.  

An electron moving with a velocity with a component perpendicular to an electric field E will, in 

its rest frame, experience a magnetic field, 9 = − 7

^_
× 2, that couples to its spin by the Zeeman 

effect.  The perturbation to the Hamiltonian is given by ` = − ~ℏ

!=
[ ∙ 9 = − ~ℏ

!=#±#
[ ∙ (2 × ˙), 

where s is the magnetic moment of the electron due to its spin and p is its momentum.  In the 

laboratory reference frame, this is seen as a degeneracy splitting between the two spin directions 

proportional to the momentum.  For spin-½ particles, the TRS operator is antiunitary, EX! = −1, 

so spin-orbit coupling respects TRS; the TRS operator flips both spin and momentum, resulting 

in the same spin-orbit energy.   
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This leads to an important constraint on the edge states of a time-reversal symmetric 2D 

system known as Kramers theorem.  Kramers theorem states that for every energy eigenstate of a 

time-reversal symmetric system with half-integer total spin, there must be at least one other 

eigenstate of the same energy.  Without spin-orbit interactions, this is just the degeneracy 

between up and down spins, but when spin-orbit interactions are included, the consequences are 

more complex.  TRS-invariant Bloch Hamiltonians must satisfy the condition 

EX¯̆(O)EXVR = ¯̆(−O).  (3.50) 
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Figure 3.12: a) [Adapted from Ref. 104] Two options for electronic dispersion between two 

boundary Kramers degenerate points.  On the left, an even number of surface states cross the 

Fermi level, resulting in an ordinary insulator.  On the right, an odd number of states cross the 

Fermi level, which leads to topologically protected metallic boundary states.  b) [Adapted from 

Ref. 121] Another example of the energy dispersions.  On the left is a 1D TR invariant system.  

Due to the Kramers degeneracy at 0 and ±p, the energy spectrum intersects the Fermi level 4n 

times.  On the right, the helical states on one boundary of a QSH system are represented by the 

solid lines.  At k = 0, the edge states are Kramers partners, while at k = ±p, they merge into the 

bulk and pair with the edge states at the other boundary (dashed lines).  The red and blue lines 

represent the two partners of a Kramers pair. 
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We can define new topological equivalence classes of Hamiltonians that satisfy this 

constraint in terms of those that can be smoothly deformed without closing the bulk energy gap.  

The TKNN invariant is n = 0, but we now have a new invariant with two possible values, n = 0 

or 1.113  Figure 3.12 plots the two distinct possibilities for edge states for a TRS 2D insulator as a 

function of crystal momentum k along the edge.  By TRS, in Figure 3.12a, the displayed half of 

the Brillouin zone 0 < s] <
\

a
 is the mirror image of the other half, −\

a
< s] < 0, with the 

accompanying spin-flip.  The shaded regions at the top and bottom are the conduction and 

valence bands of the bulk, separated by an energy gap.  The details of the Hamiltonian dictate 

whether or not there are states bound to the edge within the gap.  If there are states bound to the 

edges, then by Kramers theorem they must be twofold degenerate at the TRS invariant momenta 

s] = 0,± \

a
.  In other words, at exactly s] = 0 and at the boundary of the Brillouin zone s] =

± \

a
, the time-reversed states are at the same momentum.  Away from these points, spin-orbit 

coupling splits the degeneracy, but there are two ways by which the Kramers pair of states can 

recombine.  In Figure 3.12, left, they connect as pairs; in other words, the Fermi energy always 

intersects an even number of bands.  In Figure 3.12, right, there is an odd number of crossings. 

 In the case of an even number intersections it is possible to smoothly deform the 

Hamiltonian to push the edge states out of the gap.  The edge states can be eliminated by forcing 

all bound states out of the gap.  If there is an odd number of intersections, however, there will 

always be at least one Kramers pair in the gap.  Therefore, the presence of edge states is a 

topological property,113,114 and we can define an equivalence class of Hamiltonians.  In the same 

way that the Chern number groups Hamiltonians by an integer (Z), these two new classes are 

defined by the Z2 topological invariant.  The Z2 topological invariant,n, can be either 0 or 1, and 

is defined as the number of Kramers pairs at the Fermi energy in the gap modulo 2.   
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≠ = Xbmod(2). (3.51) 

 There are multiple formulations of n based on bulk properties, including spin-charge 

separation,122 symmetry properties of the Brillouin zone,123 and more.113,124–129  Determining n 

becomes simpler if the crystal has extra symmetry, such as when a 2D system conserves the 

perpendicular spin Sz.  In this case, the up and down spins have independent Chern numbers, ?↑ 

and ?↓, and TRS requires , ?↑ + ?↓ = 0.  The difference, however, , 
A↑VA↓
!

= ?- defines a 

quantized spin Hall conductivity,130  and the Z2 invariant is given by 

≠ = ?-mod2.  (3.52) 

The value of the Z2 invariant in this case is robust even when the addition of terms that do not 

conserve Sz are incorporated, which causes ?↑ and ?↓ to lose their significance as independent 

numbers.   

 

3.4.4  The Quantum Spin Hall Effect 

 The quantum spin Hall effect (QSHE) is an experimentally demonstrated example of 

nontrivial ≠ = 1 topological order.  In 2005, Kane and Mele113,114 developed the formulation for 

the QSH state as the combination of two copies of the Haldane model.  In the QSHE, there is a 

single Kramers pair of states at the edge of the system with opposite momenta and spins.113,120  

The spin up electrons exhibit the chiral integer QHE, while the spin down electrons exhibit an 

anti-chiral integer QHE.  In effect, this is a double quantum Hall effect, where each edge is 

partnered with its opposite spin to respect time reversal symmetry.  Edge modes in the QSHE are 

called helical since their spin is correlated to their direction of motion.131 

 Figure 3.13 is a side by side comparison of the chiral quantum Hall effect and the helical 

quantum spin Hall effect.  In both cases, the edge modes are topologically protected.  The 
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difference, however, is that while the QHE has only clockwise or counterclockwise conduction, 

the QSHE has both right- and left-moving states on each side, with the oppositely moving states 

having opposite spin.  In the simple geometry of Figure 3.13, the two-terminal conduction for 

the QHE setup is 
A~#

q
 for integer n, but for the QSHE it is always 

!~#

q
 due to the doubling of both 

right- and left-moving states.   

 

Figure 3.13: [Adapted from Ref. 86] Comparison of the QHE (left) and the QSHE (right). 

 

 Though an edge in the QSHE has both forward and backward movers, scattering by 

nonmagnetic impurities is forbidden.  A quick analogy suggested by Qi and Zhang132 is 

instructive for understanding the QSHE’s invulnerability to nonmagnetic impurities.  Consider a 

lens coated with some antireflection material (Figure 3.14a).  Light reflected from the top and 

bottom surfaces interfere destructively, so that there is zero net reflection and therefore perfect 

transmission.  Similarly, an electron can be reflected by an impurity and the different possible 

paths for reflection interfere.  As Figure 3.14b shows, an electron in a QSH edge state can take 

either a clockwise or a counterclockwise turn about a nonmagnetic impurity.  During this turn, 

the electron’s spin rotates by an angle of p or -p.  Thus, the two paths, related by TRS, differ by 

a total angle of 2p, or a full rotation of the electron spin.  A quantum mechanical property of a 

In the quantum world, atoms and their electrons can
form many different states of matter, such as crystalline solids,
magnets, and superconductors. Those different states can 
be classified by the symmetries they spontaneously break—
translational, rotational, and gauge symmetries, respectively,
for the examples above. Before 1980 all states of matter in 
condensed-matter systems could be classified by the principle 
of broken symmetry. The quantum Hall (QH) state, discovered
in 1980,1 provided the first example of a quantum state that has
no spontaneously broken symmetry. Its behavior depends only
on its topology and not on its specific geometry; it was topo-
logically distinct from all previously known states of matter.

Recently, a new class of topological states has emerged,
called quantum spin Hall (QSH) states or topological insula-
tors (see PHYSICS TODAY, January 2008, page 19). Topologically
distinct from all other known states of matter, including QH
states, QSH states have been theoretically predicted and ex-
perimentally observed in mercury telluride quantum wells,2,3

in bismuth antimony alloys,4,5 and in Bi2Se3 and Bi2Te3 bulk

crystals.6–8 QSH systems are insulating in the bulk—they have
an energy gap separating the valence and conduction bands—
but on the boundary they have gapless edge or surface states
that are topologically protected and immune to impurities or
geometric perturbations.9–12 Inside such a topological insula-
tor, Maxwell’s laws of electromagnetism are dramatically al-
tered by an additional topological term with a precisely quan-
tized coefficient,12 which gives rise to remarkable physical
effects. Whereas the QSH state shares many similarities with
the QH state, it differs in important ways. In particular, QH
states require an external magnetic field, which breaks time-
reversal (TR) symmetry; QSH states, in contrast, are TR invari-
ant and do not require an applied field.

From quantum Hall to quantum spin Hall 
In a one-dimensional world, there are two basic motions: for-
ward and backward. Random scattering can cause them to
mix, which leads to resistance. Just as we have learned from
basic traffic control, it would be much better if we could spa-

tially separate the counterflow directions
into two separate lanes, so that random
collisions could be easily avoided. That
simple traffic control mechanism turns
out to be the essence of the QH effect.1

The QH effect occurs when a strong
magnetic field is applied to a 2D gas of
electrons in a semiconductor. At low tem-
perature and high magnetic field, elec-
trons travel only along the edge of the
semiconductor, and the two counterflows
of electrons are spatially separated into
different “lanes” located at the sample’s
top and bottom edges. Compared with a
1D system with electrons propagating in
both directions, the top edge of a QH bar
contains only half the degrees of freedom.
That unique spatial separation is illus-
trated in  figure 1a by the symbolic equa-
tion “2 = 1 [forward mover] + 1 [backward
mover]” and is the key reason why the
QH effect is topologically robust. When
an edge-state electron encounters an im-
purity, it simply takes a detour and still
keeps going in the same direction 
(figure 1), as there is no way for it to turn

© 2009 American Institute of Physics, S-0031-9228-1001-020-3 January 2010 Physics Today 33
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In topological insulators, spin–orbit coupling and time-reversal symmetry combine to form a novel
state of matter predicted to have exotic physical properties.
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Spinless 1D chain Spinful 1D chain

2 = 1 + 1 4 = 2 + 2

Quantum Hall Quantum spin Hall

Figure 1. Spatial separation is at the heart of both the quantum Hall (QH) and
the quantum spin Hall (QSH) effects. (a) A spinless one-dimensional system has
both a forward and a backward mover. Those two basic degrees of freedom are
spatially separated in a QH bar, as illustrated by the symbolic equation
“2 = 1 + 1.”  The upper edge contains only a forward mover and the lower edge
has only a backward mover. The states are robust: They will go around an impu-
rity without scattering. (b) A spinful 1D system has four basic channels, which
are spatially separated in a QSH bar: The upper edge contains a forward mover
with up spin and a backward mover with down spin, and conversely for the
lower edge. That separation is illustrated by the symbolic equation “4 = 2 + 2.”



 85 

spin-½ particle is that its wavefunction gains a negative sign when it has undergone a full 2p 

rotation.  Therefore, the two backscattering paths interfere destructively, and perfect transmission 

is protected.  If an impurity has some magnetic moment, however, it can break the TRS between 

the two edge modes, and the two wavefunctions no longer interfere destructively.   

 

Figure 3.14: [Adapted from Ref. 86] a) Photons traveling through a lens with antireflective 

coating.  Light reflecting from the top and bottom surfaces interfere destructively.  b) Likewise, 

the possible paths for an electron scattering off an impurity interfere destructively such that 

ballistic transmission is protected. 

 

 This picture only applies when there is an odd number of QSH edge state pairs, primarily 

only a single pair.113,131,133  If there were two forward-moving and two backward-moving states 

on a single edge, it would be possible for an electron to be scattered from a forward-moving state 

to a backward-moving state without flipping its spin, which would destroy the perfect destructive 

interference, and dissipation could occur.  Therefore, in order for the QSH state to be robust, 

there must be an odd number of forward- (backward-)movers.  This even/odd effect is the 

primary reason a QSH insulator is characterized by a Z2 topological invariant.   

back. Such a dissipationless transport mechanism could be
extremely useful for semiconductor devices. Unfortunately,
the requirement of a large magnetic field severely limits the
application potential of the QH effect.

Can we get rid of the magnetic field and still separate the
traffic lanes for the electrons? In a real 1D system, forward-
and backward-moving channels for both spin-up and spin-
down electrons give rise to four channels, as shown in
 figure 1b. The traffic lanes for the electrons can be split in a
TR-invariant fashion, without any magnetic field, as illus-
trated in the figure by the symbolic equation “4 = 2 + 2.” We
can leave the spin-up forward mover and the spin-down
backward mover on the top edge and move the other two
channels to the bottom edge. A system with such edge states
is said to be in a QSH state, because it has a net transport of
spin forward along the top edge and backward along the bot-
tom edge, just like the separated transport of charge in the
QH state. Charles Kane and Eugene Mele from the University
of Pennsylvania,9 and Andrei Bernevig and one of us
(Zhang)10 from Stanford University, independently proposed
in 2005 and 2006 that such a separation, and thus the QSH
state, can in principle be realized in certain theoretical models
with spin–orbit coupling. (The fractional QSH state was also
predicted,10 though it has yet to be experimentally observed.)

Although a QSH edge consists of both backward and for-
ward movers, backscattering by nonmagnetic impurities is
forbidden. To understand that effect, we start with an anal-
ogy from daily life. Most eyeglasses and camera lenses have
a so-called antireflection coating. As shown in  figure 2a, re-
flected light from the top and the bottom surfaces interfere
with each other destructively, leading to zero net reflection
and thus perfect transmission. However, such an effect is not
robust, as it depends on the matching between the optical
wavelength and the thickness of the coating.

Just like the reflection of a photon by a surface, an elec-
tron can be reflected by an impurity, and different reflection
paths also interfere with each other. As shown in  figure 2b,
an electron in a QSH edge state can take either a clockwise
or a counterclockwise turn around the impurity, and during
that turn the spin rotates by an angle of π or −π to the oppo-
site direction. Consequently, the two paths, related by TR
symmetry, differ by a full π − (−π) = 2π rotation of the elec-
tron spin. A profound and yet deeply mysterious principle of
quantum mechanics states that the wavefunction of a spin-1⁄2
particle obtains a negative sign upon a full 2π rotation. Thus
the two backscattering paths always interfere destructively,
which leads to perfect transmission. If the impurity carries a

magnetic moment, the TR symmetry is broken and the two
reflected waves no longer interfere destructively. In that
sense the robustness of the QSH edge state is protected by
the TR symmetry.

The physical picture above applies only to the case of sin-
gle pairs of QSH edge states. If there are two forward movers
and two backward movers in the system—as, for example,
the unseparated 1D system shown in  figure 1b—then an elec-
tron can be scattered from a forward- to a backward-moving
channel without reversing its spin and without the perfect
destructive interference, and thus there is dissipation. Con-
sequently, for the QSH state to be robust, the edge states must
consist of an odd number of forward movers and an odd
number of backward movers. That even–odd effect, charac-
terized by a so-called Z2 topological quantum number, is at
the heart of the QSH state9,13 and is why a QSH insulator is
also synonymously referred to as a topological insulator.

Two-dimensional topological insulators
Looking at  figure 1b, we see that the QSH effect requires the
counterpropagation of opposite spin states. Such a coupling
between the spin and the orbital motion is a relativistic effect
most pronounced in heavy elements. Although all materials
have spin–orbit coupling, only a few of them turn out to be
topological insulators. In 2006 Bernevig, Taylor Hughes, and
Zhang proposed a general mechanism for finding topological
insulators2 and predicted in particular that mercury telluride
quantum wells—nanoscopic layers sandwiched between
other materials—are topological insulators beyond a critical
thickness dc. The general mechanism is band inversion, in
which the usual ordering of the conduction band and valence
band is inverted by spin–orbit coupling.2,4

In most common semiconductors, the conduction band
is formed from electrons in s orbitals and the valence band is
formed from electrons in porbitals. In certain heavy elements
such as Hg and Te, however, the spin–orbit coupling is so
large that the p- orbital band is pushed above the s- orbital
band—that is, the bands are inverted. Mercury telluride
quantum wells can be prepared by sandwiching the material
between cadmium telluride, which has a similar lattice con-
stant but much weaker spin–orbit coupling. Therefore, in-
creasing the thickness d of the HgTe layer increases the
strength of the spin–orbit coupling for the entire quantum
well. For a thin quantum well, as shown in the left column of
figure 3a, the CdTe has the dominant effect and the bands
have a normal ordering: The s-like conduction subband E1 is
located above the p-like valence subband H1. In a thick quan-

a b
Figure 2. (a) On a lens with antireflection
coating, light waves reflected by the top
(blue line) and the bottom (red line) sur-
faces interfere destructively, which leads to
suppressed reflection. (b) A quantum spin
Hall edge state can be scattered in two di-
rections by a nonmagnetic impurity. Going
clockwise along the blue curve, the spin ro-
tates by π ; counterclockwise along the red
curve, by −π. A quantum mechanical phase
factor of −1 associated with that difference
of 2 π leads to destructive interference of
the two paths—the backscattering of elec-
trons is suppressed in a way similar to that
of photons off the antireflection coating.
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back. Such a dissipationless transport mechanism could be
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the requirement of a large magnetic field severely limits the
application potential of the QH effect.
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and backward-moving channels for both spin-up and spin-
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trated in the figure by the symbolic equation “4 = 2 + 2.” We
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backward mover on the top edge and move the other two
channels to the bottom edge. A system with such edge states
is said to be in a QSH state, because it has a net transport of
spin forward along the top edge and backward along the bot-
tom edge, just like the separated transport of charge in the
QH state. Charles Kane and Eugene Mele from the University
of Pennsylvania,9 and Andrei Bernevig and one of us
(Zhang)10 from Stanford University, independently proposed
in 2005 and 2006 that such a separation, and thus the QSH
state, can in principle be realized in certain theoretical models
with spin–orbit coupling. (The fractional QSH state was also
predicted,10 though it has yet to be experimentally observed.)

Although a QSH edge consists of both backward and for-
ward movers, backscattering by nonmagnetic impurities is
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ogy from daily life. Most eyeglasses and camera lenses have
a so-called antireflection coating. As shown in  figure 2a, re-
flected light from the top and the bottom surfaces interfere
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and thus perfect transmission. However, such an effect is not
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wavelength and the thickness of the coating.
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site direction. Consequently, the two paths, related by TR
symmetry, differ by a full π − (−π) = 2π rotation of the elec-
tron spin. A profound and yet deeply mysterious principle of
quantum mechanics states that the wavefunction of a spin-1⁄2
particle obtains a negative sign upon a full 2π rotation. Thus
the two backscattering paths always interfere destructively,
which leads to perfect transmission. If the impurity carries a

magnetic moment, the TR symmetry is broken and the two
reflected waves no longer interfere destructively. In that
sense the robustness of the QSH edge state is protected by
the TR symmetry.

The physical picture above applies only to the case of sin-
gle pairs of QSH edge states. If there are two forward movers
and two backward movers in the system—as, for example,
the unseparated 1D system shown in  figure 1b—then an elec-
tron can be scattered from a forward- to a backward-moving
channel without reversing its spin and without the perfect
destructive interference, and thus there is dissipation. Con-
sequently, for the QSH state to be robust, the edge states must
consist of an odd number of forward movers and an odd
number of backward movers. That even–odd effect, charac-
terized by a so-called Z2 topological quantum number, is at
the heart of the QSH state9,13 and is why a QSH insulator is
also synonymously referred to as a topological insulator.

Two-dimensional topological insulators
Looking at  figure 1b, we see that the QSH effect requires the
counterpropagation of opposite spin states. Such a coupling
between the spin and the orbital motion is a relativistic effect
most pronounced in heavy elements. Although all materials
have spin–orbit coupling, only a few of them turn out to be
topological insulators. In 2006 Bernevig, Taylor Hughes, and
Zhang proposed a general mechanism for finding topological
insulators2 and predicted in particular that mercury telluride
quantum wells—nanoscopic layers sandwiched between
other materials—are topological insulators beyond a critical
thickness dc. The general mechanism is band inversion, in
which the usual ordering of the conduction band and valence
band is inverted by spin–orbit coupling.2,4

In most common semiconductors, the conduction band
is formed from electrons in s orbitals and the valence band is
formed from electrons in porbitals. In certain heavy elements
such as Hg and Te, however, the spin–orbit coupling is so
large that the p- orbital band is pushed above the s- orbital
band—that is, the bands are inverted. Mercury telluride
quantum wells can be prepared by sandwiching the material
between cadmium telluride, which has a similar lattice con-
stant but much weaker spin–orbit coupling. Therefore, in-
creasing the thickness d of the HgTe layer increases the
strength of the spin–orbit coupling for the entire quantum
well. For a thin quantum well, as shown in the left column of
figure 3a, the CdTe has the dominant effect and the bands
have a normal ordering: The s-like conduction subband E1 is
located above the p-like valence subband H1. In a thick quan-
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Figure 2. (a) On a lens with antireflection
coating, light waves reflected by the top
(blue line) and the bottom (red line) sur-
faces interfere destructively, which leads to
suppressed reflection. (b) A quantum spin
Hall edge state can be scattered in two di-
rections by a nonmagnetic impurity. Going
clockwise along the blue curve, the spin ro-
tates by π ; counterclockwise along the red
curve, by −π. A quantum mechanical phase
factor of −1 associated with that difference
of 2 π leads to destructive interference of
the two paths—the backscattering of elec-
trons is suppressed in a way similar to that
of photons off the antireflection coating.
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 If extra probes for measuring voltage are added to the Hall bars in Figure 3.13, the QHE 

chiral edges and the QSHE helical edges will have distinct responses.  Chiral modes propagate 

voltages perfectly until they reach a current source or drain (Section 3.2.1).  In a helical mode, 

though, at every probe, there are left- and right-moving states entering and exiting at both the left 

and right sides.  When an electron enters the probe, it loses its spin coherence, and therefore has 

an equal probability of leaving in either direction.  The result is two-way conduction between 

each probe.  By the probe numbering convention in Figure 3.2, >N,NWR = >NWR,N = 1, with all other 

elements zero.  The new voltage relations in the QSHE are 

'! =
!

@
'R and '@ =

R

@
'R. (3.53) 

In the QSHE, voltage drops by in equal amounts as we move along the probes in the direction of 

current flow.  Generalizing to any device geometry, the resistance between adjacent leads is 

always 
q

~#
.  

 

3.5  Two-Dimensional Topological Insulators 

 Though the search for QSHE systems, or 2D topological insulators (2DTIs) began with 

graphene,114 the spin-orbit coupling of carbon orbitals is too weak to produce a significant gap.134  

Thus began the search for QSHE candidate systems among heavier elements, which typically 

have stronger spin-orbit coupling.  In 2006, Bernevig, Hughes, and Zhang (BHZ) proposed the 

first generalized mechanism for finding topological insulators, and specifically suggested 

mercury telluride quantum wells (QWs), nanoscale layers sandwiched between thicker layers of 

other materials, would exhibit QSH states.120  They argued that HgTe QWs are topological 

insulators above a critical thickness dc, and the general mechanism for the QSHE in these 
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systems is band inversion, in which the usual valence band lies above the usual conductance 

band due to spin-orbit coupling.135 

 BHZ proposed sandwiching the HgTe QWs between layers of CdTe (Figure 3.15a).  

Figure 3.15b shows the band structure of both compounds.  In most semiconductors, including 

CdTe (Figure 3.15b right), the conduction band above the Fermi energy is composed of 

electrons in s orbitals (the G6 band), and the valence band is composed of electrons in p orbitals 

(the G7 and G8 bands).  HgTe, however, has an inverted band structure (Figure 3.15b left) due to 

large spin-orbit coupling, and the roles of the two bands are reversed.  When HgTe is 

sandwiched between CdTe, the band positions are shifted, pushing the s-type G6 up in energy and 

pushing p-type G8 down.  If the QWs are thin, this will force the bands back into a conventional 

alignment, like in CdTe (Figure 3.15c left).  If the QW thickness is above the critical thickness, 

dc, however, the band structure will stay inverted (Figure 3.15c right). 
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Figure 3.15: a) [Adapted from Ref. 86] HgTe QWs sandwiched between CdTe. b) [Adapted from 

Ref. 120] Relevant bands for HgTe and CdTe.  CdTe (right) has a conventional semiconductor 

band structure, with p-type valence band G8 and s-type conduction band G6.  In HgTe (right) the 

band positions are inverted  c) Band positions in the quantum well structure.  When the QW is 

thin (left) the band positions are forced back into conventional ordering by confinement.  For a 

sufficiently thick well (right), the inverted gap structure is restored. 

 

tum well, as shown in the right column,
the opposite ordering occurs due to in-
creased thickness d of the HgTe layer.
The critical thickness dc for band inver-
sion is predicted to be around 6.5 nm.

The QSH state in HgTe can be de-
scribed by a simple model for the E1
and H1 subbands2 (see the box on page
36). Explicit solution of that model
gives one pair of edge states for d > dc in
the inverted regime and no edge states
in the d < dc, as shown in  figure 3b. The
pair of edge states carry opposite spins
and disperse all the way from valence
band to conduction band. The crossing
of the dispersion curves is required 
by TR symmetry and cannot be re-
moved—it is one of the topological sig-
natures of a QSH insulator.

Less than one year after the theo-
retical prediction, a team at the Univer-
sity of Würzburg led by Laurens
Molenkamp observed the QSH effect in
HgTe quantum wells grown by molec-
ular-beam epitaxy.3 The edge states
provide a direct way to experimentally
distinguish the QSH insulator from the
trivial insulator. The two edge states of
the QSH insulator act as two conduct-
ing 1D channels, which each contribute
one quantum of conductance, e2/h . That
perfect transmission is possible be-
cause of the principle of antireflection
explained earlier. In contrast, a trivial
insulator phase is “really” insulating,
with vanishing conductance. Such a
sharp conductance difference between
thin and thick quantum wells was ob-
served experimentally, as shown in
 figure 3c.

From two to three dimensions
From figure 3b we see that the 2D topo-
logical insulator has a pair of 1D edge
states crossing at momentum k = 0.
Near the crossing point, the dispersion
of the states is linear. That’s exactly the
dispersion one gets in quantum field
theory from the Dirac equation for a
massless relativistic fermion in 1D, and
thus that equation can be used to de-
scribe the QSH edge state. Such a pic-
ture can be simply generalized to a 3D
topological insulator, for which the sur-
face state consists of a single 2D mass-
less Dirac fermion and the dispersion
forms a so-called Dirac cone, as illus-
trated in  figure 4. Similar to the 2D case, the crossing point—
the tip of the cone—is located at a TR-invariant point, such
as at k = 0, and the degeneracy is protected by TR symmetry.

Liang Fu and Kane predicted4 that the alloy Bi1−xSbx
would be a 3D topological insulator in a special range of x,
and with angle-resolved photoemission spectroscopy
(ARPES) Zahid Hasan and coworkers at Princeton University
observed the topological surface states in that system.5 How-
ever, the surface states and the underlying mechanism turn
out to be extremely complex. In collaboration with Zhong

Fang’s group at the Chinese Academy of Sciences, the two of
us predicted that Bi2Te3, Bi2Se3, and Sb2Te3, all with the lay-
ered structure in  figure 4a, are 3D topological insulators,
whereas a related material, Sb2Se3, is not.6

As in HgTe, the nontrivial topology of the Bi2Te3 family
is due to band inversion between two orbitals with opposite
parity, driven by the strong spin–orbit coupling of Bi and Te.
Due to such similarity, that family of 3D topological insula-
tors can be described by a 3D version of the HgTe model (see
the box). First-principle calculations show that the materials
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Figure 3. Mercury telluride quantum wells are two-dimensional topological 
insulators. (a) The behavior of a mercury telluride–cadmium telluride quantum
well depends on the thickness d of the HgTe layer. Here the blue curve shows the
potential-energy well experienced by electrons in the conduction band; the red
curve is the barrier for holes in the valence band. Electrons and holes are trapped
laterally by those potentials but are free in the other two dimensions. For quan-
tum wells thinner than a critical thickness dc ≃ 6.5 nm, the energy of the lowest-
energy conduction subband, labeled E1, is higher than that of the highest-
energy valence band, labeled H1. But for d > dc, those electron and hole bands
are inverted. (b) The energy spectra of the quantum wells. The thin quantum well
has an insulating energy gap, but inside the gap in the thick quantum well are
edge states, shown by red and blue lines. (c) Experimentally measured resistance
of thin and thick quantum wells, plotted against the voltage applied to a gate
electrode to change the chemical potential. The thin quantum well has a nearly
infinite resistance within the gap, whereas the thick quantum well has a quan-
tized resistance plateau at R = h/2e2, due to the perfectly conducting edge states.
Moreover, the resistance plateau is the same for samples with different widths,
from 0.5 µm (red) to 1.0 µm (blue), proof that only the edges are conducting.

spontaneously broken at the edge. The stability
of the helical edge states has been confirmed in
extensive numerical calculations (13, 14). The
time-reversal property leads to the Z2 classifica-
tion (10) of the QSH state.

States of matter can be classified according
to their topological properties. For example,
the integer quantum Hall effect is characterized
by a topological integer n (15), which deter-
mines the quantized value of the Hall con-
ductance and the number of chiral edge states.
It is invariant under smooth distortions of the
Hamiltonian, as long as the energy gap does
not collapse. Similarly, the number of helical
edge states, defined modulo 2, of the QSH state
is also invariant under topologically smooth
distortions of the Hamiltonian. Therefore, the
QSH state is a topologically distinct new state
of matter, in the same sense as the charge
quantum Hall effect.

Unfortunately, the initial proposal of the
QSH in graphene (7) was later shown to be
unrealistic (16, 17), as the gap opened by the
spin-orbit interaction turns out to be extremely
small, on the order of 10−3 meV. There are also
no immediate experimental systems available
for the proposals in (8, 18). Here, we present
theoretical investigations of the type III semi-
conductor quantum wells, and we show that the
QSH state should be realized in the “inverted”
regime where the well thickness d is greater
than a certain critical thickness dc. On the basis
of general symmetry considerations and the
standard band perturbation theory for semi-
conductors, also called k · p theory (19), we
show that the electronic states near the Γ point
are described by the relativistic Dirac equation in
2 + 1 dimensions. At the quantum phase
transition at d = dc, the mass term in the Dirac
equation changes sign, leading to two distinct U
(1)-spin and Z2 topological numbers on either
side of the transition. Generally, knowledge of
electronic states near one point of the Brillouin
zone is insufficient to determine the topology of
the entire system; however, it does allow robust
and reliable predictions on the change of
topological quantum numbers. The fortunate
presence of a gap-closing transition in the HgTe-
CdTe quantum wells therefore makes our theoret-
ical prediction of the QSH state conclusive.

The potential importance of inverted band-
gap semiconductors such as HgTe for the spin
Hall effect was pointed out in (6, 9). The central
feature of the type III quantum wells is band
inversion: The barrier material (e.g., CdTe) has a
normal band progression, with the s-type Γ6

band lying above the p-type Γ8 band, and the
well material (HgTe) having an inverted band
progression whereby the Γ6 band lies below the
Γ8 band. In both of these materials, the gap is
smallest near the Γ point in the Brillouin zone
(Fig. 1). In our discussion we neglect the bulk
split-off Γ7 band, as it has negligible effects on
the band structure (20, 21). Therefore, we re-
strict ourselves to a six-band model, and we start

with the following six basic atomic states per
unit cell combined into a six-component spinor:

Y ¼ jΓ6, 1 2〉, jΓ6, −1
2〉, jΓ8, 3 2〉,=
!!"

jΓ8, 1 2〉, jΓ8, −1
2〉, jΓ8, −3

2〉=
#!!

ð1Þ

In quantum wells grown in the [001] direc-
tion, the cubic or spherical symmetry is broken
down to the axial rotation symmetry in the plane.
These six bands combine to form the spin-up
and spin-down (±) states of three quantum well
subbands: E1, H1, and L1 (21). The L1 subband
is separated from the other two (21), and we
neglect it, leaving an effective four-band model.
At the Γ point with in-plane momentum k|| =
0, mJ is still a good quantum number. At this
point the |E1, mJ〉 quantum well subband state
is formed from the linear combination of the
|Γ6, mJ = ±1 2= 〉 and |Γ8, mJ = ±1 2= 〉 states, while
the |H1, mJ〉 quantum well subband state is
formed from the |Γ8, mJ = ± 3

2= 〉 states. Away
from the Γ point, the E1 and H1 states can mix.
Because the |Γ6, mJ = ±1 2= 〉 state has even par-
ity, whereas the |Γ8, mJ = ±3

2= 〉 state has odd
parity under two-dimensional spatial reflection,
the coupling matrix element between these two
states must be an odd function of the in-plane
momentum k. From these symmetry consid-
erations, we deduce the general form of the ef-
fective Hamiltonian for the E1 and H1 states,
expressed in the basis of |E1, mJ = 1

2= 〉, |H1,
mJ = 3

2= 〉 and |E1,mJ = – 1
2= 〉, |H1,mJ = – 3

2= 〉:

Heff ðkx, kyÞ ¼
HðkÞ 0
0 H*ð−kÞ

$ %
,

HðkÞ ¼ eðkÞ þ diðkÞsi ð2Þ

where si are the Pauli matrices. The form of
H*(−k) in the lower block is determined from
time-reversal symmetry, and H*(−k) is uni-
tarily equivalent to H*(k) for this system (22).
If inversion symmetry and axial symmetry
around the growth axis are not broken, then
the interblock matrix elements vanish, as
presented.

We see that, to the lowest order in k, the
Hamiltonian matrix decomposes into 2 × 2
blocks. From the symmetry arguments given
above, we deduce that d3(k) is an even function
of k, whereas d1(k) and d2(k) are odd functions
of k. Therefore, we can generally expand them
in the following form:

d1 þ id2 ¼ Aðkx þ ikyÞ ≡ Akþ

d3 ¼ M − Bðk2x þ k2yÞ, eðkÞ ¼ C − Dðk2x þ k2yÞ
ð3Þ

where A, B, C, and D are expansion parameters
that depend on the heterostructure. The
Hamiltonian in the 2 × 2 subspace therefore
takes the form of the (2 + 1)-dimensional Dirac
Hamiltonian, plus an e(k) term that drops out
in the quantum Hall response. The most im-
portant quantity is the mass or gap parameter
M, which is the energy difference between the
E1 and H1 levels at the Γ point. The overall
constant C sets the zero of energy to be the
top of the valence band of bulk HgTe. In a
quantum well geometry, the band inversion in
HgTe necessarily leads to a level crossing at
some critical thickness dc of the HgTe layer.
For thickness d < dc (i.e., for a thin HgTe

Fig. 1. (A) Bulk energy
bands of HgTe and CdTe
near the G point. (B)
The CdTe-HgTe-CdTe
quantum well in the
normal regime E1 > H1
with d < dc and in the
inverted regime H1 >
E1 with d > dc. In this
and other figures,G8/H1
symmetry is indicated in
red and G6/E1 symmetry
is indicated in blue.
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Figure 3.16: [Adapted from Ref. 120] Energy of the E1 and H1 bands as a function of well 

thickness.  The point at which the bands cross is considered a topological phase transition from 

the trivial to the nontrivial Z2 topology.   

 

 Figure 3.16  plots the energy positions of the bands (G8 = H1, G6 = E1) as a function of 

well thickness.  BHZ interpreted the point at which the electron and hole bands cross (about 6.3 

nm in Figure 3.16) as the topological phase transition from trivial and nontrivial Z2 

topology.113,136  The inverted gap must close before reopening again at the sample boundary.  

The QSH state in HgTe can be understood by a simple model of the electron-like Kramers pair 

of E1 states and the hole-like Kramers pair of H1 states.120  Using the ordered set of four six-

component (for six bands) basis vectors{|iRW⟩,| R̄W⟩, |iRV⟩, | R̄V⟩}, the BHZ Hamiltonian is 

given by120 

¯̆ = �
ℎ(O) 0
0 ℎ∗(−O)Ü (3.54) 

with 

ℎ(O) = h(O) + i ∙ [,  (3.55) 

layer), the quantum well is in the “normal”
regime, where the CdTe is predominant and
hence the band energies at the Γ point satisfy
E(Γ6) > E(Γ8). For d > dc, the HgTe layer is
thick and the well is in the inverted regime,
where HgTe dominates and E(Γ6) < E(Γ8). As
we vary the thickness of the well, the E1 and
H1 bands must therefore cross at some dc, and
M changes sign between the two sides of the
transition (Fig. 2, A and B). Detailed cal-
culations show that, close to transition point,
the E1 and H1 bands—both doubly degenerate

in their spin quantum number—are far away in
energy from any other bands (21), hence
making an effective Hamiltonian description
possible. Indeed, the form of the effective Dirac
Hamiltonian and the sign change of M at d = dc
for the HgTe-CdTe quantum wells deduced
above from general arguments is already
completely sufficient to conclude the existence
of the QSH state in this system. For the sake of
completeness, we also provide the microscopic
derivation directly from the Kane model using
realistic material parameters (22).

Figure 2A shows the energies of both the E1
and H1 bands at k|| = 0 as a function of quantum
well thickness d obtained from our analytical
solutions. At d = dc ~ 64 Å, these bands cross.
Our analytic results are in excellent qualitative
and quantitative agreement with previous nu-
merical calculations for the band structure of
Hg1−xCdxTe-HgTe-Hg1−xCdxTe quantum wells
(20, 21). We also observe that for quantum
wells of thickness 40 Å < d < 70 Å, close to
dc, the E1± and H1± bands are separated from
all other bands by more than 30 meV (21).

Let us now define an ordered set of four
six-component basis vectors y1, ..., 4 = (|E1, +〉,
|H1, +〉, |E1, −〉, |H1, −〉) and obtain the
Hamiltonian at nonzero in-plane momentum
in perturbation theory. We can write the
effective 4 × 4 Hamiltonian for the E1±, H1±
bands as

Heff
ij ðkx, kyÞ ¼

Z∞

−∞

dz〈yjjHðkx, ky, −i∂zÞjyi〉

ð4Þ

whereH(kx, ky, −i∂z) is the six-band Kane model
(19). The form of the effective Hamiltonian is
severely constrained by symmetry with respect
to z. Each band has a definite z symmetry or
antisymmetry, and vanishing matrix elements
between them can be easily identified. For
example,

Heff
23 ¼

1ffiffiffi
6

p Pkþ

Z∞

−∞

dz〈Γ6, þ 1
2ðzÞjΓ8, −1

2ðzÞ〉=
"

ð5Þ

where P is the Kane matrix element (19),
vanishes because |Γ6, +1 2= 〉(z) is even in z, where-
as |Γ8, − 1

2= 〉(z) is odd. The procedure yields
exactly the form of the effective Hamiltonian
(Eq. 2), as we anticipated from the general
symmetry arguments, with the coupling func-
tions taking exactly the form of Eq. 3. The dis-
persion relations (22) have been checked to be in
agreement with prior numerical results (20, 21).
We note that for k ∈ [0, 0.01 Å−1] the dispersion
relation is dominated by the Dirac linear terms.
The numerical values for the coefficients depend
on the thickness, and values at d = 58 Å and d =
70 Å are given in (22).

Having presented the realistic k · p calcula-
tion starting from the microscopic six-band
Kane model, we now introduce a simplified
tight-binding model for the E1 and H1 states
based on their symmetry properties. We con-
sider a square lattice with four states per unit
cell. The E1 states are described by the s-orbital
states y1,3 = |s,a = ± 1

2= 〉, and the H1 states are
described by the spin-orbit coupled p-orbital
states y2,4 = ±(1/

ffiffiffi
2

p
)|px ± ipy, a = ±1

2= 〉, where
a denotes the electron spin. Nearest-neighbor
coupling between these states gives the tight-

Fig. 2. (A) Energy of E1 (blue) and H1 (red) bands at k|| = 0 versus quantum well thickness d. (B)
Energy dispersion relations E(kx,ky) of the E1 and H1 subbands at d = 40, 63.5, and 70 Å (from left
to right). Colored shading indicates the symmetry type of the band at that k point. Places where the
cones are more red indicate that the dominant state is H1 at that point; places where they are more
blue indicate that the dominant state is E1. Purple shading is a region where the states are more
evenly mixed. At 40 Å, the lower band is dominantly H1 and the upper band is dominantly E1. At
63.5 Å, the bands are evenly mixed near the band crossing and retain their d < dc behavior moving
farther out in k-space. At 70 Å, the regions near k|| = 0 have flipped their character but eventually
revert back to the d < dc farther out in k-space. Only this dispersion shows the meron structure (red
and blue in the same band). (C) Schematic meron configurations representing the di(k) vector near
the G point. The shading of the merons has the same meaning as the dispersion relations above.
The change in meron number across the transition is exactly equal to 1, leading to a quantum jump
of the spin Hall conductance s(s)xy = 2e2/h. We measure all Hall conductances in electrical units. All
of these plots are for Hg0.32Cd0.68Te-HgTe quantum wells.
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where s are the Pauli matrices, and  

h(O) = j − ∞s!, i = uO +†(O)ˆ̂, and †(O) = † − Ës!. (3.56) 

A,B,C, and D are materials parameters and 2M is the positive or negative energy gap between E1 

and H1.  A incorporates the interband coupling to lowest order, and B, which is typically 

negative, describes the curvature of the bands.  For M/B < 0, the eigenstates of the Hamiltonian 

describe a normal insulator.  For a thick QW with inverted bands, however, M is negative, and 

the eigenstates reveal the helical edge states of a QSH insulator (QSHI).  For a semi-infinite 

geometry with a boundary at x=0, the effective Hamiltonian at the edge, to leading order in ky, is 

given by86,120 

¯̆~;V~ = usÁ1\ = 3
usÁ 0
0 −usÁ

4, (3.57) 

which is a helical, linear spectrum with an odd number of Kramers partners.   

 

Figure 3.17: [Adapted from Ref. 120] a) Proposed setup for a QSHE experiment b) Predictions 

for conductance as a function of gate voltage for a thin well (left) and thick well (right).  

binding Hamiltonian of the form of Eq. 2, with
the matrix elements given by

d1 þ id2 ¼ A½sinðkxÞ þ i sinðkyÞ&

d3 ¼ −2B½2 − ðM=2BÞ − cosðkxÞ − cosðkyÞ&

eðkÞ ¼ C − 2D½2 − cosðkxÞ − cosðkyÞ& ð6Þ

The tight-binding lattice model simply reduces
to the continuum model Eq. 2 when expanded
around the Γ point. The tight-binding calcula-
tion serves dual purposes. For readers un-
initiated in the Kane model and k · p theory,
this gives a simple and intuitive derivation of
our effective Hamiltonian that captures all the
essential symmetries and topology. On the other
hand, it also introduces a short-distance cutoff
so that the topological quantities can be well
defined.

Within each 2 × 2 subblock, the Hamiltonian
is of the general form studied in (9), in the
context of the quantum anomalous Hall effect,
where the Hall conductance is given by

sxy ¼ −
1
8p2

ZZ
dkxdkyd̂ ˙ ∂xd̂ ' ∂yd̂ ð7Þ

in units of e2/h (the square of the charge on the
electron divided by the Planck constant), where
d̂ denotes the unit di(k) vector introduced in the
Hamiltonian Eq. 2. When integrated over the
full Brillouin zone, sxy is quantized to take
integer values that measure the skyrmion num-
ber, or the number of times the unit d̂ winds
around the unit sphere over the Brillouin zone
torus. The topological structure can be best
visualized by plotting d̂ as a function of k. In a
skyrmion with a unit of topological charge, the
d̂ vector points to the north (or the south) pole
at the origin, points to the south (or the north)
pole at the zone boundary, and winds around the
equatorial plane in the middle region.

Substituting the continuum expression for
the di(k) vector as given in Eq. 3, and cutting off
the integral at some finite point in momentum
space, one obtains sxy = 1

2= sign (M), which is a
well-known result in field theory (23). In the
continuum model, the d̂ vector takes the con-
figuration of a meron, or half of a skyrmion,
where it points to the north (or the south) pole at
the origin and winds around the equator at the
boundary. As the meron is half of a skyrmion,
the integral Eq. 7 gives ±1

2= . The meron
configuration of di(k) is depicted in Fig. 2, B
and C. In a noninteracting system, half-integral
Hall conductance is not possible, which means
that other points from the Brillouin zone must
either cancel or add to this contribution so that
the total Hall conductance becomes an integer.
The fermion-doubled partner (24) of our low-
energy fermion near the Γ point lies in the
higher-energy spectrum of the lattice and
contributes to the total sxy. Therefore, our
effective Hamiltonian near the Γ point cannot

yield a precise determination of the Hall
conductance for the whole system. However, as
one changes the quantumwell thickness d across
dc, M changes sign and the gap closes at the Γ
point, leading to a vanishing di(k = 0) vector at
the transition point d = dc. The sign change ofM
leads to a well-defined change of the Hall
conductance Dsxy = 1 across the transition. As
the di(k) vector is regular at the other parts of the
Brillouin zone, these parts cannot lead to any
discontinuous changes across the transition point
at d = dc.

So far, we have only discussed one 2 × 2
block of the effective Hamiltonian H. General
time-reversal symmetry dictates that sxy(H) =
−sxy(H*); therefore, the total charge Hall
conductance vanishes, and the spin Hall con-
ductance (given by the difference between the
two blocks) is finite and given by DsðsÞxy = 2 in
units of e2/h. From the general relationship
between the quantized Hall conductance and the
number of edge states (25), we conclude that the
two sides of the phase transition at d = dc must
differ in the number of pairs of helical edge
states by 1, thus concluding our proof that one
side of the transition must be Z2 odd and
topologically distinct from a fully gapped
conventional insulator.

It is desirable to establish which side of the
transition is topologically nontrivial. For this
purpose, we return to the tight-binding model
Eq. 6. The Hall conductance of this model has
been calculated (25) in the context of the
quantum anomalous Hall effect, and previously
in the context of lattice fermion simulation (26).
Besides the Γ point, which becomes gapless at
M/2B = 0, there are three other high-symmetry
points in the Brillouin zone. The (0,p) and (p,0)
points become gapless at M/2B = 2, whereas the
(p,p) point becomes gapless at M/2B = 4.
Therefore, at M/2B = 0, there is only one

gapless Dirac point per 2 × 2 block. This
behavior is qualitatively different from the
Haldane model of graphene (27), which has
two gapless Dirac points in the Brillouin zone.
ForM/2B < 0, sxy = 0; for 0 <M/2B < 2, sxy = 1.
Because this condition is satisfied in the in-
verted gap regime where M/2B = 2.02 ×10−4 at
70 Å (22) and not in the normal regime where
M/2B < 0, we believe that the inverted case is
the topologically nontrivial regime supporting a
QSH state.

We now discuss the experimental detection of
the QSH state. A series of purely electrical
measurements can be used to detect the basic
signature of the QSH state. By sweeping the gate
voltage, one can measure the two-terminal
conductance GLR from the p-doped to bulk-
insulating to n-doped regime (Fig. 3). In the bulk
insulating regime, GLR should vanish at low
temperatures for a normal insulator at d < dc,
whereas GLR should approach a value close to
2e2/h for d > dc. Strikingly, in a six-terminal
measurement, the QSH state would exhibit van-
ishing electric voltage drop between the termi-
nals m1 and m2 and between m3 and m4, in the zero
temperature limit and in the presence of a finite
electric current between the L and R terminals. In
other words, longitudinal resistance should vanish
in the zero temperature limit, with a power-law
dependence, over distances larger than the mean
free path. Because of the absence of back-
scattering, and before spontaneous breaking of
time reversal sets in, the helical edge currents flow
without dissipation, and the voltage drop occurs
only at the drain side of the contact (11). The
vanishing of the longitudinal resistance is one of
the most remarkable manifestations of the QSH
state. Finally, a spin-filtered measurement can be
used to determine the spin Hall conductance sðsÞxy .
Numerical calculations (13) show that it should
take a value close to sðsÞxy = 2e2/h.

Fig. 3. (A) Experimental
setup on a six-terminal
Hall bar showing pairs of
edge states, with spin-up
states in green and spin-
down states in purple. (B)
A two-terminal measure-
ment on a Hall bar would
give GLR close to 2e2/h
contact conductance on
the QSH side of the
transition and zero on
the insulating side. In a
six-terminal measure-
ment, the longitudinal
voltage drops m2 −
m1 and m4 − m3 vanish
on the QSH side with a
power law as the zero
temperature limit is
approached. The spin
Hall conductance s(s)xy
has a plateau with the
value close to 2e2/h.
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 This model readily forms predictions for transport measurements.  Figure 3.17a is a 

typical device geometry, a Hall bar with gate electrode to control the position of the chemical 

potential.  Heterostructures with thin QWs should exhibit the behavior of a typical 

semiconductor, namely as an increasingly negative voltage is applied to the gate, the conduction 

band becomes depleted and transport in the band gap is eliminated, then restored once the 

valence band is populated with holes (Figure 3.17b left).  For thicknesses d >dc, however, the 

four-terminal gap conductance will be quantized to 
!~#

q
 (Figure 3.17b right).   

 In less than a year after the BHZ theoretical prediction, König et al. observed the QSHE 

in HgTe quantum wells.  BHZ had predicted a dc of around 6.3 nm for HgTe.  König et al. were 

able to measure an insulating gap for a QW thickness of 5.5 nm (Figure 3.18 black line), but for 

QW thickness of 7.3 nm, the group observed quantized conductance close to 
!~#

q
 in Hall bars 

with edge lengths of 1.0 and 0.5 µm (Figure 3.18 red and green lines).  When the spacing 

between probes was increased to 20 µm, though, they found the resistance increased (Figure 

3.18 blue line).  Thus, unlike the QHE that is dissipationless on a macroscopic level, the inelastic 

mean free path for the helical edge states of the QSHE is on the order of only a few 

micrometers.86,137  Potential sources of scattering are discussed further in Section 3.6.   
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Figure 3.18: [Adapted from Ref. 121] First experimental evidence of the QSHE in HgTe 

quantum wells.  Four-terminal conductance as a function of gate voltage for well with 5.5 nm 

thickness (black), 7.3 nm thickness with 1 and 0.5 µm length between leads (red and green lines), 

and 7.3 nm thickness with 20 µm length between leads (blue line).  Inset) Comparison of 

inverted-gap devices with 1 µm length at 30 mK and 1.8K. 

 

 Further measurements of inverted-gap heterostructures confirmed edge transport by 

measuring non-local geometries in transport,138 and by imaging devices with scanning 

magnetometry.139  QSH helical edges were next predicted in QWs of the type-II semiconductor 

InAs/GaSb,140 and in 2011 InAs/GaSb QWs were confirmed to exhibit transport properties 

similar to the HgTe.141  Semiconductors continue to be at the forefront of the search for other 

potential topological insulators.  More recently, in 2016, Li et al., using scanning tunneling 

microscopy, observed a large bulk band gap with topological edge states in ZrTe5.142  Also in 

Although the four-band Dirac model (Eq. 1)
gives a simple qualitative understanding of
this novel phase transition, we also performed
more realistic and self-consistent eight-band
k·p model calculations (13) for a 6.5-nm quan-
tum well, with the fan chart of the Landau
levels displayed in Fig. 1B. The two anoma-
lous Landau levels cross at a critical magnetic
field Bc

⊥, which evidently depends on well
width. This implies that when a sample has its
Fermi energy in the gap at zero magnetic
field, this energy will always be crossed by
the two anomalous Landau levels, resulting in
a QH plateau in-between the two crossing
fields. Figure 3 summarizes the dependence
of Bc

⊥ on well width d. The open red squares
are experimental data points that result from
fitting the eight-band k·p model to experi-
mental data as in Fig. 1, while the filled red
triangles result solely from the k·p calcula-
tion. For reference, the calculated gap ener-
gies are also plotted in this graph as open
blue circles. The band inversion is reflected
in the sign change of the gap. For relatively
wide wells (d > 8.5 nm), the (inverted) gap

starts to decrease in magnitude. This is be-
cause for these well widths, the band gap no
longer occurs between the E1 and HH1 lev-
els, but rather between HH1 and HH2—the
second confined hole-like level, as schemat-
ically shown in the inset of Fig. 3 [see also
(17)]. Also in this regime, a band crossing of
conductance- (HH1) and valence- (HH2) band–
derived Landau levels occurs with increasing
magnetic field (13, 17, 18). Figure 3 clearly
illustrates the quantum phase transition that
occurs as a function of din the HgTe QWs:
Only for d> dc does Bc

⊥ exist, and at the
same time the energy gap is negative (i.e.,
the band structure is inverted). The experimen-
tal data allow for a quite accurate determi-
nation of the critical thickness, yielding dc =
6.3 ± 0.1 nm.

Zero-field edge channels and the QSH
effect. The actual existence of edge channels
in insulating inverted QWs is only revealed
when studying smaller Hall bars [the typical
mobility of 105 cm2 V−1 s−1 in n-type material
implies an elastic mean free path of lmfp ≈
1 mm (19, 20)—and one may anticipate lower

mobilities in the nominally insulating regime].
The pertinent data are shown in Fig. 4, which
plots the zero B-field four-terminal resistance
R14,23 ≡ V23/I14 as a function of normalized gate
voltage (Vthr is defined as the voltage for which
the resistance is largest) for several devices that
are representative of the large number of
structures we investigated. R14,23 is measured
while the Fermi level in the device is scanned
through the gap. In the low-resistance regions at
positive Vg − Vthr, the sample is n-type; at
negative Vg − Vthr, the sample is p-type.

The black curve labeled I in Fig. 4 was
obtained from a medium-sized [(20.0 × 13.3)
mm2] device with a 5.5-nm QW and shows the
behavior we observe for all devices with a
normal band structure: When the Fermi level
is in the gap, R14,23 increases strongly and is
at least several tens of megohm (this is the de-
tection limit of the lock-in equipment used in
the experiment). This clearly is the expected
behavior for a conventional insulator. How-
ever, for all devices containing an inverted QW,
the resistance in the insulating regime remains
finite. R14,23 plateaus at well below 100 kilohm
(i.e., G14,23 = 0.3 e2/h) for the blue curve
labeled II, which is again for a (20.0 × 13.3)
mm2 device fabricated by optical lithography,
but that contains a 7.3-nm-wide QW. For much
shorter samples (L = 1.0 mm, green and red
curves III and IV) fabricated from the same
wafer, G14,23 actually reaches the predicted
value close to 2e2/h, demonstrating the exis-
tence of the QSH insulator state for inverted
HgTe QW structures.

Figure 4 includes data on two devices with
d= 7.3 nm, L = 1.0 mm. The green trace (III)
is from a device with W = 1.0 mm, and the red
trace (IV) corresponds to a device with W =
0.5 mm. Clearly, the residual resistance of the
devices does not depend on the width of the
structure, which indicates that the transport
occurs through edge channels (21). The traces
for the d= 7.3 nm, L = 1.0 mm devices do not
reach all the way into the p-region because the
electron-beam lithography needed to fabricate
the devices increases the intrinsic (Vg = 0 V)
carrier concentration. In addition, fluctuations
on the conductance plateaus in traces II, III,
and IV are reproducible and do not stem from,
e.g., electrical noise. Although all R14,23 traces
discussed so far were taken at the base
temperature (30 mK) of our dilution refriger-
ator, the conductance plateaus are not limited
to this very-low-temperature regime. In the
inset of Fig. 4, we reproduce the green 30-mK
trace III on a linear scale and compare it with
a trace (in black) taken at 1.8 K from another
(L × W) = (1.0 × 1.0) mm2 sample, which was
fabricated from the same wafer. In the fabrica-
tion of this sample, we used a lower-illumination
dose in the e-beam lithography, resulting in a
better (but still not quite complete) coverage of
the n-i-p transition. Clearly, in this further
sample, and at 1.8 K, the 2e2/h conductance

Fig. 3. Crossing field,
Bc⊥ (red triangles), and
energy gap, Eg (blue
open dots), as a func-
tion of QW width d
resulting from an eight-
band k·p calculation.
For well widths larger
than 6.3 nm, the QW is
inverted and a mid-gap
crossing of Landau levels
deriving from the HH1
conductance and E1 va-
lence band occurs at fi-
nite magnetic fields. The
experimentally observed
crossing points are in-
dicated by open red
squares. The inset shows
the energetic ordering of the QW subband structure as a function of QW width d. [See also (17)].
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2017, Fei et al. observed helical edge conduction in the type-II Weyl semimetal monolayer 

WTe2,
143 the first example of the QSHE in a monolayer material.   

 

3.6  Scattering Mechanisms in Two-Dimensional Topological Insulators 

 While the successes of measuring helical edges in different materials continues to grow, 

the mechanisms that limit the ballistic transport to the few-microns scale and below are still 

relatively unknown.  Relevant scattering processes are those capable of flipping the spin of 

forward-moving electrons such that they can scatter into the backward-moving state with some 

finite probability on the length scale of a few micrometers.121,144  Further evidence of the edge 

states being prone to some sort of interactions, Du et al. found the Fermi velocity in QWs of 

InAs/GaSb was at least an order of magnitude smaller than that of a GaAs 2D electron gas.144 

The leading theory suggests inelastic scattering occurs between the helical edge modes and 

puddles of charge density in the bulk.   
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Figure 3.19: [Adapted from Ref. 145] Model of backscattering in the QSHE due to the Kondo 

effect.  Conductance of a helical edge mode coupled to a locally doped region with an odd 

number of electrons for two regimes of Coulomb interactions, characterized by the Luttinger 

parameter K.  For weak interactions (red line) scattering is maximized at a Kondo temperature 

TK
* and eliminated at T=0 due to the formation of a Kondo singlet.  For strong interactions (blue 

line) the system is a low temperature insulator. 

 

 Maciejko et al. proposed one of the first models of the edge conduction of a QSHI in the 

presence of a magnetic impurity, in the form of an odd number of electrons in a locally doped 

region, as a function of temperature (Figure 3.19).145  At high temperatures, they found the main 

mechanism at work was two-particle scattering and/or the Kondo effect,146 a process by which 

conduction electrons in a metal are scattered by a magnetic impurity, which leads to a term in the 

resistivity that increases logarithmically with temperature.  At low temperatures, they showed for 

weak Coulomb interactions, normal helical transport is restored, but if Coulomb interactions are 
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Following the recent observation of the quantum spin Hall (QSH) effect in HgTe quantum wells, an

important issue is to understand the effect of impurities on transport in the QSH regime. Using linear

response and renormalization group methods, we calculate the edge conductance of a QSH insulator as a

function of temperature in the presence of a magnetic impurity. At high temperatures, Kondo and/or two-

particle scattering give rise to a logarithmic temperature dependence. At low temperatures, for weak

Coulomb interactions in the edge liquid, the conductance is restored to unitarity with unusual power laws

characteristic of a ‘‘local helical liquid,’’ while for strong interactions, transport proceeds by weak

tunneling through the impurity where only half an electron charge is transferred in each tunneling event.

DOI: 10.1103/PhysRevLett.102.256803 PACS numbers: 73.43.!f, 71.55.!i, 72.25.Hg, 75.30.Hx

The quantum spin Hall (QSH) insulator is a topologi-
cally nontrivial state of matter [1] that has recently been
observed in transport experiments carried out in HgTe
quantum wells (QW) [2] following its theoretical predic-
tion [3]. The QSH insulator has a charge excitation gap in
the bulk but supports 1D gapless edge states forming a so-
called helical liquid (HL): on each edge, a Kramers’ pair of
states with opposite spin polarization counterpropagate.
The QSH insulator is robust against weak single-particle
perturbations that preserve time-reversal symmetry (TRS)
such as weak potential scattering [4– 6].

This theoretical picture is consistent with experimental
observations: the longitudinal conductance G in a Hall bar
measurement is approximately quantized to G0 ¼ 2e2=h,
independent of temperature, for samples of about a micron
length [2,7]. However, larger samples exhibit G<G0 and
G decreases with decreasing temperature [7]. Deviations
from the expected quantized value have been attributed to
local doped regions due to potential inhomogeneities
within the sample arising from impurities or roughness of
the well-barrier interface [7]. Although pure potential scat-
tering cannot backscatter the edge states, the role of these
potential inhomogeneities is to trap bulk electrons which
may then interact with the edge electrons. These localized
regions act as dephasing centers for the edge channels due
to interaction effects and may cause backscattering.

In this Letter, we study the temperature dependence of
the edge conductance G of a QSH insulator. We consider
the case where a local doped region in the vicinity of the
edge traps an odd number of electrons and acts as a
magnetic impurity coupled to the HL. Our main results
are (Fig. 1): (1) At high temperatures, G is logarithmic,
!!G # !ðG!G0Þ ¼ !þ " lnðD=TÞ where !, " are
interaction-dependent parameters and D is an energy scale
on the order of the bulk gap. (2) For weak Coulomb

interactions K > 1=4 where K is the Luttinger parameter
of the HL, G is restored to unitarity at T ¼ 0 due to the
formation of a Kondo singlet. This is in stark contrast with
the Kondo problem in a usual spinful 1D liquid where G
vanishes at T ¼ 0 for all K# < 1 where K# is the Luttinger
parameter in the charge sector [8]. At low but finite T, G
decreases as an unusual power law!G / !T2ð4K!1Þ due to
correlated two-particle backscattering (2PB). The edge
liquid being helical, the decrease in G is a direct measure
of the spin-flip rate [9]. (3) For strong Coulomb interac-
tions K < 1=4, 2PB processes are relevant and the system
is insulating at T ¼ 0. At low but finite T, G is restored by

FIG. 1 (color online). Temperature dependence of the conduc-
tance: the behavior is logarithmic at high temperature T ' T(

and power law at low temperature T ) T(. At T ¼ 0, a metal-
insulator quantum phase transition is driven by Coulomb inter-
actions in the helical liquid: the system is a ‘‘Kondo metal’’ for
K > 1=4 and a ‘‘Luttinger liquid insulator’’ for K < 1=4. The
Fano factor e( is defined as the ratio between shot noise and
current and reflects the charge of the current-carrying excita-
tions.
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strong, transport occurs by tunneling through the impurity, and only half an electron charge is 

transferred per tunneling event.  The strength of the Coulomb interaction is characterized by the 

Luttinger parameter K.  For ä > R

%
 (weak interactions, red line in Figure 3.19 ), scattering is 

maximized at a finite Kondo temperature Eb
∗ and eliminated at zero temperature due to the 

formation of a Kondo singlet.  For ä < R

%
 (strong interactions, blue line in Figure 3.19), two-

particle backscattering occurs at all temperatures below some characteristic E!
∗, and the system is 

a normal insulator.  This theory has been difficult to observe experimentally, however, due to the 

very low temperatures required, but the expressions for the weak coupling regime with ä ≈ 1 

seem to agree with the experimental thesis work of M. König on HgTe QWs.147  Maciejko et al. 

suggest QWs with stronger interaction effects would be better suited for verifying their model.   

 

 

Figure 3.20: [Adapted from Ref. 148] a) Model of QSHE backscattering due to strong potential 

scatterers VN on the edge in the presence of a magnetic field. b) Proposed conductance of edge 

modes as a function of magnetic field for different values of scattering site potentials. 

 

 Another model by Tkachov et al.148 focuses on strong potential scattering at specific 

points along the edge (Figure 3.20).  They found if the Fermi level is shifted from the band gap 
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into the Landau-quantized conductance or valence band, the system will transition from the 

quantum spin Hall state into the quantum Hall state.  Near the transition point as a function of 

field and chemical potential, the conductance of the helical edge modes is greatly suppressed due 

a combination of the nonlinearity of the spectrum and enhanced backscattering.  Edge channels 

are localized within the magnetic length, separated by the backscattering centers VN  (Figure 

3.20a) that could include sample inhomogeneities where electronic trap states interact with the 

edge modes and randomize their propagation directions.138  At zero magnetic field, this effect is 

believed to be weak, but near the QSH-QH transition point, they argue backscattering is greatly 

enhanced due to the reduction of the group velocities of the coupled QSH modes.  The 

conductance has an oscillatory response and decays with magnetic field B as B-2N, where N is the 

number of backscatterers on the edge (Figure 3.20b). 

 

Figure 3.21: [Adapted from Ref. 149] a)  Electrons moving in a helical edge tunnel into and out 

of puddles formed by inhomogeneous charge distribution within the bulk.  Electrons may 

undergo inelastic backscattering within the puddles.  b) Proposed edge conduction changes due 

to inelastic backscattering.  For an odd number of electrons in the puddle, conductance change 

saturates with temperature, for an even number of electrons, it is proportional to T4. 
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 A relatively widely accepted model was proposed by Väyrynen, Goldstein, and 

Glazman.149,150  Their theory looks into the zero-field interaction between helical edge modes 

and charge puddles formed by doping a 2DTI (Figure 3.21).  They model a single puddle as a 

quantum dot with a well-defined number of electrons coupled to the helical edge and find it 

could lead to significant backscattering in the edge due to the long electron dwelling time within 

the quantum dot.  With some finite probability, electrons can tunnel laterally from the helical 

edge to the dot, spend enough time in the dot to lose phase coherence, then reverse-tunnel to the 

backward-moving edge channel (Figure 3.21a).  The main result is a stark difference in the 

temperature dependence of even versus odd number of occupied dots (Figure 3.21b).  For an 

even number of occupied quantum dots, ∆+ ≡ ~#

q
− + ∝ E%.  In the case of an odd number of 

occupied quantum dots, ground state degeneracy initially causes weak temperature dependence, 

∆+ ∝ ln! g ê

êk
h, where TK is the Kondo temperature, leading to a plateau in ∆+ as a function of 

gate voltage.  Once temperature is lowered below the Kondo temperature for the bottom of the 

odd valley, the odd valley contribution begins to decrease as the curve begins to take on the E% 

dependence.  In other words the change in conduction for an odd occupation saturates at a Kondo 

temperature.  This model is best suited for experimental tests at low temperatures with small 

samples, such that the number of contributing puddles is relatively few.   

 While some experimental studies have been fairly consistent with aspects of these 

models, none of the theories have been thoroughly confirmed.  Furthermore, some observed 

effects seem inconsistent with the proposed backscattering mechanisms.  For example, though 

most theories predict some temperature dependence, Spanton et al. observed an edge resistance 

in InAs/GaSb independent of temperature up to 30K.234  
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3.7  Predictions of Noise in Two-Dimensional Topological Insulators and Initial 

Experiments 

 As discussed in Chapter 2, electronic noise can often provide answers that normal 

transport measurements cannot, particularly in the transmission rates of 1D channels. Several 

predictions for noise in 2DTIs exist, with many proposing noise as a method for distinguishing 

the backscattering mechanism in the helical edge modes.  Theories of noise in the helical edges 

of 2DTIs generally model backscattering as either a constriction or quantum point contact (QPC) 

that allows tunneling between two edges151–154 or magnetic impurity coupled to a single edge.155–

158   
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Figure 3.22: [Adapted from Ref. 151] a) Proposed experimental setup for a 2DTI with two 

helical edge modes.  Each corner is connected to an electron reservoir held at a set bias voltage.  

The upper and lower channels can be coupled locally by a top gate, allowing tunneling between 

the two edges. b) Charged-pair (left) and spinful-pair (right) tunneling.  Due to the helicity, a 

single Tc event turns two right-movers into two left-movers (or vice versa) so that the charge 

transferred from left to right changes by two.  Ts affects the spin sector in an analogous way.  

Both processes lead to opposite cross correlations between spin-up and spin-down tunneling 

currents. 

 

 Figure 3.22a is an example of a proposed experimental setup for measuring current noise 

and current cross correlations due to interedge tunneling by Thomas Schmidt from 2011.151  

Using perturbation theory to derive the cumulant generating function for the edge-to-edge 

current, Schmidt found different possible transport channels lead to distinct signatures in the 
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current noise.  He considers single-particle tunneling, charged-pair tunneling, and spinful-pair 

tunneling.  The contributions to the noise by each type of tunneling couple differently to the 

applied voltages.  Since no noise is produced along the edges themselves, the tunnel current 

noise is the noise measured at any of the four contacts.  According to Schmidt, a clearer picture 

can be obtained by looking at the cross-correlations of the currents along opposite edges.  The 

cross-correlation noise does not include any contribution from single particle tunneling because 

this interaction does not couple spin-up and spin-down electrons.  Otherwise, the correlations are 

positive for charged-pair transport and negative for spinful-pair transport.  In the limit of 

repulsive interactions with applied voltage at a single contact, the two types of pair tunneling 

have different voltage-dependencies.  The cross-correlation noise is then a non-monotonic 

function of voltage and could potentially be used to distinguish between different transport 

regimes.   

 Theoretical approaches to coupling of the helical edge states with magnetic impurities 

span a variety of approaches, including deriving dependence of noise on magnetic field,154 

frequency,157,159 and anisotropy of the impurity.159  Motivated by experimental evidence of 

backscattering in HgTe QWs,138,160,161 Aseev and Nagaev156 calculated the edge resistance and 

nonequilibrium current noise that arise from the tunnel coupling between edge states and puddles 

of charge within the bulk believed to arise from inhomogeneous distribution of doping impurities 

(Figure 3.23).149  Under the assumptions that the impurity puddles have a continuous energy 

spectrum and that the motion of electrons within the puddles is two-dimensional,  the impurity 

scattering combined with spin-orbit coupling may result in temperature-independent spin 

relaxation.  The result is increased resistance of the edge states and finite shot noise.  The authors 

explore the limiting cases of either absent or very strong energy relaxation of electrons in the 



 101 

puddles and compare the magnitude of the shot noise with the increase in resistance to ascertain 

the model’s relevance to experimental systems.   

 

Figure 3.23: [Adapted from Ref. 156] Contour plots of Fano factor as a function of coupling 

strength fL and normalized spin flip time h for a) one puddle in the absence of energy relaxation, 

b) continuous distribution of puddles in the absence of energy relaxation, c) one puddle with 

strong energy relaxation, and d) continuous distribution of puddles with strong energy 

relaxation. 

 

P. P. ASEEV AND K. E. NAGAEV PHYSICAL REVIEW B 94, 045425 (2016)

FIG. 2. Contour plot of Fano factor for one puddle in the absence
of energy relaxation given by Eq. (19) in coordinates effective
coupling strength φL—normalized spin-flip time η1. The maximum
Fano factor corresponds to the maximum resistance of the edge states.

The Fano factor F = SI /2eI is given by the expression

F = 1
4

(1 − e−φL )
1 + e−φL + 4η1 + 4η2

1 + 4η3
1

(1 + e−φL + 2η1)(1 + η1)3
. (19)

The contour plot ofF is shown in Fig. 2. It varies from zero for
φL = 0 or infinitely large η1 to 1/4 for strong coupling φL and
short spin-flip times η1 = 0. Hence the maximum Fano factor
corresponds to the maximum resistance of the edge states.
Note that F is not a unique function of the conductance.

B. Multiple puddles in the continuous limit

Consider now the case where the edge states are weakly
tunnel coupled to many conducting puddles. As the distribution
functions only slightly change from one puddle to another,
it is possible to go to the continuum limit and assume that
the number n of the puddles per unit length of the insulator
edge, the density of states in the puddles ν, the coupling
constant

$(x) = 1
%x

∑

i∈[x,x+%x]

∫
dy $i(y),

and the electron distributions in the puddles are smooth
functions of the coordinate x. Hence one may just omit the
summation over the puddle number i and replace Fiσ (ε,t) by
Fσ (x,ε,t) in the right-hand side of Eq. (1). Along with this,
one may factor out fσ from the integral in the left-hand side
of Eq. (2) so that it becomes local in space and assumes the
form

∂Fσ

∂t
+ 1

τd

(Fσ − fσ ) + 1
2τs

(Fσ − F−σ ) = 0, (20)

where τd (x) = 2π!v ν(x)n(x)/$(x) is the effective dwell
time of an electron in the puddle. In the stationary case, Eq. (20)

FIG. 3. Contour plot of the conductance for a continuous distri-
bution of puddles given by Eq. (25) in coordinates effective coupling
strength ϕL—normalized spin-flip time η. As the coupling and the
spin-flip rate increase, it decreases from e2/2π! to zero.

is readily solved for Fσ giving

Fσ (x,ε) = 1
2

(1 + 2η)fσ + f−σ

1 + η
, (21)

where η = τs/τd . A substitution of these values into Eq. (1)
results in a closed system of differential equations for fσ ,

σv
dfσ

dx
= −1

2
$e

fσ − f−σ

1 + η
. (22)

In terms of a new effective coordinate

ϕ(x) =
∫ x

0

dx ′

v

$(x ′)
1 + η(x ′)

, (23)

the solutions of this system may be written as

f+(ϕ) = 2 + ϕL − ϕ

2 + ϕL

, f−(ϕ) = ϕL − ϕ

2 + ϕL

, (24)

where ϕL ≡ ϕ(L). A substitution of these distribution func-
tions into Eq. (4) gives

I = e2V

π!
1

2 + ϕL

, (25)

which suggests that the conductance of the edge states tends to
zero as the number of puddles increases for any finite spin-flip
time (see Fig. 3).

The Langevin equation for the fluctuation δfσ (x,ε,t) is
obtained from (5) by omitting the subscript i for all the
quantities and replacing δFiσ by δFσ (x,ε,t). The spectral
density of Langevin sources δJσ (x,ε,t) is obtained from
Eq. (7) in a similar way.

The Langevin equation for δFσ (x,ε,t) becomes local in
space and may be written as

∂δFσ

∂t
+ 1

τd

(δFσ − δfσ ) + 1
2τs

(δFσ − δF−σ )

= −δJσ (x,ε,t)
2π!vnν

+ δJσ (x,ε,t), (26)
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whereas the spectral density of the spin-flip sources takes up
the form

⟨δJσ (x,ε)δJσ (x ′,ε′)⟩ω

= 1
τsnν

δ(x − x ′)δ(ε − ε′)[Fσ (1 − F− σ ) + F− σ (1 − Fσ )].

(27)

The system of equations for δfσ and δFσ is solved in a way
similar to the system of kinetic equations for fσ and Fσ , and
the fluctuation of current is expressed in terms of the Langevin
sources as

δI = e

2π!

∫
dε

∫ ϕL

0

dϕ

2 + ϕL

× [(δJ+ − δJ− )/) + 2τsδJ+]. (28)

Hence the expression for the spectral density of current
fluctuations is of the form

SI = e2

π!
1

(2 + ϕL)2

∫
dε

∫ ϕL

0

dϕ

1 + η
{f+(1 − F+)

+F+(1 − f+) + f− (1 − F− ) + F− (1 − f− )

+ 2η[F− (1 − F+) + F+(1 − F− )]}. (29)

The calculation can be carried to the end only if the spatial
dependence of η is specified. For simplicity, assume that it is
constant. Together with Eqs. (24) and (21), it results in a Fano
factor

F = ϕL

3
[ϕL(ϕL + 6)(1 + η)3

+ 12η(η2 + η + 1) + 6]/[(2 + ϕL)(1 + η)]3. (30)

The contour plot of Eq. (30) is shown in Fig. 4. The Fano factor
vanishes in the ballistic limit and tends to its maximum value

FIG. 4. Contour plot of Fano factor for a continuous distribution
of puddles in the absence of energy relaxation in coordinates effective
coupling strength ϕL—normalized spin-flip time η according to
Eq. (30). The Fano factor vanishes in the ballistic regime and tends
to its maximum value 1/3 regardless of η if the conductance of the
edge states tends to zero.

1/3 regardless of η if the conductance of the edge states tends
to zero. This behavior is reminiscent of multimode diffusive
wires [29,30].

IV. STRONG ENERGY RELAXATION

Consider now the opposite case of strong energy relaxation
in the puddles. At zero temperature, the distribution functions
of electrons in the puddles have a steplike shape Fiσ (ε,t) =
+(µiσ − ε), where µiσ (t) is the spin- dependent chemical
potential of electrons in puddle i. However, despite the strong
energy relaxation, the shot noise in such a system is still
possible because in general µi+ ̸= µi− and there is a spin
imbalance in the puddles.

It is convenient to introduce the excess densities of electrons
in the edge states

ρσ (x,t) =
∫

dε

2π!v
[fσ (x,ε,t) − +(− ε)]. (31)

Integrating Eq. (1) over the energy results in an equation for
ρiσ (x,t) of the form

(
∂

∂t
+ σv

∂

∂x

)
ρσ = −

∑

i

)i

(
ρσ − µiσ

2π!v

)
, (32)

which should be supplemented by the boundary conditions

ρ+(0) = eV

4π!v
, ρ− (L) = − eV

4π!v
. (33)

Upon integrating Eq. (6) over the energy, the inelastic collision
integral drops out because the inelastic scattering conserves the
total number of particles, and one arrives at the equation

∂µiσ

∂t
+ 1

2π!vνi

∫
dx )i(x)(µiσ − 2π!ρσ )

+ 1
2τs

(µiσ − µi,− σ ) = 0. (34)

Equations (32) and (34) together with the boundary conditions
(33) form a complete system for determining ρσ and µiσ ,
and the current flowing through the edge states equals I =
ev[ρ+(x) − ρ− (x)].

As the coefficients in Eqs. (1) and (2) are assumed to be
energy independent, the energy relaxation in the puddles does
not affect the average current. Moreover, ρσ (x) and µiσ may
be obtained just by integrating fσ and Fiσ obtained for the
elastic case over the energy. Things are different if the spectral
density of noise is considered because the correlation functions
(7) and (8) are bilinear functions of fσ and Fiσ . Though the
expressions for the spectral density of current noise in terms
of the average distribution functions remain the same, the
resulting values appear to be different.

A. Single puddle

As in the fully elastic case, we start by considering a system
with only one puddle. The average current in it is given by
Eq. (14). The spin-dependent chemical potentials of electrons
in the puddle may be obtained either by solving Eqs. (32) and
(34) or by making use of the elastic distribution function (13)
and integrating the difference Fσ (x) − +(− ε) over the energy.
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This gives us

µσ = σ
eV

2
η1

1 + η1
. (35)

The distribution functions are easily obtained by solving
Eq. (1) and equal

f+(φ,ε) =

⎧
⎨

⎩

0, ε > eV/2,
e−φ, µ+ < ε < eV/2,
1, ε < µ+

(36)

and

f−(φ,ε) = 1 − f+(φL − φ,−ε) (37)

because of the electron-hole symmetry. The fluctuation of the
current and the spectral density of its noise are given by
Eqs. (17) and (18). The substitution of fσ from Eqs. (36)
and (37) and Fσ (ε) = θ (µσ − ε) with µσ from Eq. (35) into
Eq. (18) results in a Fano factor

F = 1
2

1 − e−φL

1 + e−φL + 2η1

e−φL + 2η2
1

(1 + η1)2
. (38)

The contour plot of the Fano factor is shown in Fig. 5. It
exhibits a more complicated behavior than in the elastic case
and shows two separate maxima. One of them F ≈ 0.086
corresponds to the limit of fast spin relaxation η1 = 0 and
φL ≈ 1 and results from random tunneling between the puddle
and the edge states. The other maximum is nearly of the
same magnitude F ≈ 0.09 and corresponds to the limit of
strong puddle-edge state coupling φL → ∞ and moderate spin
relaxation η1 ≈ 1.6. It stems from random spin-flip scattering
in the puddle.

FIG. 5. Contour plot of Fano factor for a single puddle with a
strong energy relaxation in coordinates effective coupling strength
φL—normalized spin-flip time η1 according to Eq. (38). The
maximum of Fano factor at η1 = 0 results from the randomness of
tunneling between the puddle and the edge states. The maximum at
η1 ≈ 1.6 stems from the randomness of spin-flip scattering in the
puddle.

FIG. 6. Approximate coordinate dependence of the chemical
potentials for spin-up and spin-down electrons in the puddles for
the strong energy relaxation. There are finite jumps between the
spin-dependent chemical potentials of the left and right reservoirs
and potentials of the puddles.

B. Continuous limit

If there are many puddles weakly coupled to the edge states
and the energy relaxation in the puddles is strong, one may
consider the continuous limit much like as in Sec. III B. To
this end, we introduce the coordinate-dependent distribution
function of electrons in the puddles Fσ (x,ε,t) = &(µσ − ε),
where µσ (x,t) is the local spin-dependent chemical potential
of electrons in the puddle at point x. The excess densities
of electrons in the edge states (31) obey Eq. (32) with µiσ

replaced by µσ (x), and Eq. (34) takes up the form

∂µσ

∂t
+ 1

τd

(µσ − 2π!vρσ ) + 1
2τs

(µσ − µ−σ ) = 0. (39)

The solution of these equations is easily obtained, and in terms
of the variable ϕ (23), the spin-dependent chemical potentials
may be presented in the form

µσ (ϕ) = eV

2
(1 + η)(ϕL − 2ϕ) + 2ση

(2 + ϕL)(1 + η)
. (40)

An approximate coordinate dependence of the potentials is
shown in Fig. 6. Note that there is a finite jump between the
chemical potentials of the reservoir and the puddles at the left
end

,µ = eV

2
− µ+(0) = eV

(1 + η)(2 + ϕL)
(41)

and a similar jump at the right end.
The current is given by the same Eq. (25) as in the purely

elastic case. The equation for the fluctuation of current and the
expression for its spectral density are the same as Eqs. (28)
and (29), but the distribution functions fσ and Fσ are now
different. To calculate fσ explicitly, one has to specify the
coordinate dependence of η, and we assume it to be constant
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FIG. 7. Contour plot of Fano factor for a continuous distribution
of puddles for a strong energy relaxation given by Eq. (43) in
coordinates effective coupling strength ϕL—normalized spin-flip
time η. The smaller maximum of F is located at η = 0, and the
larger is reached at η → ∞. F varies from zero to 1/4.

like in Sec. III B. Solving Eq. (1) readily gives

f+ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, ε < µ+(ϕ),
exp

[
µ+(ϕ)−ε

$µ

]
, µ+(ϕ) < ε < µ+(0),

exp
[

µ+(ϕ)−µ+(0)
$µ

]
, µ+(0) < ε < eV/2,

0, ε > eV/2

(42)

and f− is related to f+ by the electron-hole symmetry
condition Eq. (37).

The resulting Fano factor equals

F = ϕL

(2 + ϕL)2

1 + 2η2

(1 + η)2
. (43)

The contour plot of this equation is shown in Fig. 7. Much
like the case of a single puddle, the Fano factor exhibits two
isolated maxima. Both of them correspond to φL = 2, i.e., to
the conductance e2/4π!. The smaller maximum F = 1/8 is
located at η = 0, and the larger maximum F = 1/4 is reached
at η → ∞. Hence F varies from zero to 1/4, but unlike in

the elastic case, it vanishes in the limit of zero conductance
regardless of τs .

V. CONCLUSION

In conclusion, we have calculated the conductance and shot
noise of a pair of edge states in a 2D topological insulator using
a semiphenomenological model of conducting puddles in the
bulk of material that can exchange electrons with the edge
states. We have considered two versions of this model. The
first version involves one puddle with arbitrary coupling to the
edge states, and the second version involved a continuum of
puddles weakly coupled by tunneling to these states. The rate
of spin relaxation in the puddles was assumed to be finite, and
the energy relaxation in them was assumed to be either absent
at all or very fast.

In the case of a single puddle without energy relaxation,
the conductance decreases with increasing coupling and spin-
relaxation rate from e2/2π! to e2/4π!. Along with this, the
Fano factor increases from zero to 1/4.

In the continuum limit without energy relaxation, the
conductance tends to zero as the coupling and spin-relaxation
rate increase, while the Fano factor increases from zero to 1/3,
as in diffusive metals. One may think that in the most realistic
case of several puddles strongly coupled to the edge states, F
lies somewhere between 1/4 and 1/3.

The presence of a strong energy relaxation does not change
the conductance but significantly changes the noise. The
maximum values of the Fano factor are lower than in the
elastic case and are now reached at intermediate values of
conductance. Moreover, F is a nonmonotonic function of both
coupling and spin-flip rate and vanishes in the limit of zero
conductance.

The experimental values of the Fano factor for the edge
states in HgTe topological insulators [20] vary between 0.1 and
0.3, which roughly agrees with the above model of the noise.
However, to reliably distinguish between different versions of
this model, one has to carefully correlate the Fano factor of
the sample with its conductance, which has yet to be done.
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 Their general setup is a pair of helical edge states with linear dispersion l‚ = |{|w that 

connect electron reservoirs kept at constant voltages ± ∑

!
.  Both forward- and backward-moving 

electron momentums are locked to a definite spin projection, 1 = ±1.  The edge states are able 

to exchange electrons with conducting puddles in the 2D bulk formed by large-scale potential 

fluctuations.  The puddles are assumed to be large enough to have continuous spectra, and 

electrons inside the puddles are subject to spin relaxation due to spin-orbit processes and to 

energy relaxation.  In the first version of their model, they consider a single puddle with arbitrary 

coupling to the edge states, and in the second version, they repeat the calculations for a 

continuum of puddles with weak coupling.  For a single puddle with no energy relaxation (elastic 

scattering only), conductance decreases with increasing coupling strength and relaxation rate, 

from 
~#

q
 to 

~#

!q
, while the Fano factor increases from 0 to 

R

%
 (Figure 3.23a).  In the limit of a 

continuum of puddles, still with no energy relaxation, conductance tends to zero with increasing 

coupling and spin-relaxation rates, and the Fano factor increases from zero to 
R

@
 (Figure 3.23b), 

as in diffusive metals.  It follows that in the most realistic case of several puddles strongly 

coupled to the edge, 
R

%
< 3 < R

@
. 

 Including strong energy relaxation does not affect the conductance, but does significantly 

alter the noise.  In this limit, the maximum Fano factors are smaller than those in the purely 

elastic limit and correspond to the intermediate values of the conductance.  Furthermore, the 

Fano factor becomes a nonmonotonic function of both the coupling strength and the spin-flip rate 

(Figure 3.23c,d), and it vanishes completely when conductance reaches zero.   
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Figure 3.24: [Adapted from Ref. 162] Shot noise in HgTe QWs.  Fano factor is within the range 

0.1<F<0.3, consistent with disordered multi-mode transport. 

 

 An experimental report on the shot noise in HgTe-based QWs by Tikhonov et al.162 

found Fano factors in the range 0.1 < F < 0.3 for noise in the regime of disordered edge transport 

(Figure 3.24).  As their devices were shorter than even the shortest estimate of the ballistic 

dephasing length, the authors argue they must be in the limit of disordered multi-mode transport.   

They found the Fano factor was dependent on gate voltage and exhibited sample-sample 

variation, which, along with the range found for F, may be evidence in support for Aseev and 

Nagaev’s model.  This would seem to argue against purely topologically-protected helical edge 

modes as the dominant edge conduction in these samples. 

 Another experimental study by Aliev et al.163 fabricated TI/Al2O3/Co tunnel junctions, 

with bottom TI electrodes of either Bi2Te3 or Bi2Se3.  They found features related to the band 

structure appeared in both the tunneling conductance and the low frequency noise spectrum.  The 
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bias dependence of the 1/f noise showed peaks at specific energies corresponding to features in 

the band structure of the TI (Figure 3.25).  This study could be useful to repeat in the search for 

new TI materials and attempts to manipulate their spin-polarized properties.   

 

 

Figure 3.25: [Adapted from Ref. 163] Conductance (a,c) and 1/f noise (b,d) for TI/Al2O3/Co 

tunnel junctions, with bottom TI of Bi2Te3 (a,b) and Bi2Se3 (c,d).  Triangles in 1/f noise plots 

indicate points of inflection in the conductance and dashed lines indicate features in the band 

structure.   

 

 The most recent theoretical approach to zero-frequency shot noise due to a single 

magnetic impurity at the edge of a 2DTI was proposed by Kurilovich et al. in 2019.158  

Beginning with an impurity of spin S, they find for ∂ > R

!
, the Fano factor can be arbitrarily large, 

due to the bunching of large groups of electrons (Figure 3.26b).  If ∂ = R

!
, however, 1 < 3 < 2.  

The authors were motivated by a 2017 theoretical proposal by Väyrynen and Glazman157 in 
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which they calculated the shot noise due to backscattering of helical edge electrons by 

anisotropic exchange with a local spin ∂ = R

!
.  They quantified noise in terms of the 

backscattering Fano factor, Fbs, the ratio of the zero-frequency noise of the backscattering current 

and the absolute value of the average backscattering current in the high bias limit.  Väyrynen and 

Glazman found that Fbs is bounded between 1 and 2, with Fbs = 1 corresponding to independent 

backscattering of single electrons and Fbs = 2 corresponding to bunched scattering of pairs of 

electrons.  Their results were limited to cases of almost isotropic exchange interaction, which is 

reasonable for cases of puddles with spin-½, but fails for magnetic impurities with larger spins.  

For example, ∂ = Ì

!
 for a Mn2+ ion in a HgTe/CdTe QW, and moreover realistic magnetic 

impurities can be expected to have strongly anisotropic exchange interactions.164,165  Kurilovich 

et al. generalized this approach by making S arbitrary and using a general exchange interaction 

matrix.  The fact that they found no upper limit to F implies a dynamical magnetic moment with 

∂ > R

!
 can bunch helical electrons together.  In this model, electrons are found to backscatter at a 

rate ∝ ∂\!, where Sz is the impurity spin projection in z, which itself undergoes slow changes.  

The result is a modulation of the backscattering events into long, correlated pulses (Figure 3.26a) 

when ∂ > R

!
.    This effect is absent for ∂ = R

!
, allowing the authors to construct an exact 

expression for Fbs, setting it precisely between 1 and 2.   
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Figure 3.26: [Adapted from Ref. 158] a) Sketches of backscattering current as a function of time 

for (a) 4 ≪ 1, ∂ = 1; (b) 4 ≪ 1, ∂ = R

!
; (c)	{ = 1; (d) 1 − { ≪ 1, where p is a dimensionless 

parameter indicating the polarity of the impurity.  Red and blue peaks indicate backscattering 

processes with and without impurity flips, respectively.  Transitions between impurity levels are 

shown above each spin-flip process.  b) Backscattering Fano factor as a function of p and q for 

different spin values. For S = ½, the Fano factor is bound between 1 and 2.  For S > ½, F 

diverges as q® 0, except for p=1, for which F=1. 

   

 While theoretical and experimental studies of the shot noise in the helical edges of 2DTIs 

are already few, analyses of the noise arising from the insulating bulk and contact effects are 

essentially nonexistent.  Chapter 6 of this thesis will describe an initial attempt to explore noise 

properties of the bulk and contact resistances using Corbino disks of InAs/GaSb QWs.   
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Chapter 4 

Experimental Methods 

4.1  Fabrication of InAs/Ga0.68In0.32Sb Quantum Well Structures 

Figure 4.1a shows the composition of the InAs/Ga0.68In0.32Sb wafers grown by Gerard 

Sullivan using molecular beam epitaxy (MBE) at Teledyne Scientific and Imaging.  At the top 

are two caps, of InAs and GaSb, each 3 nm thick.  Then, there is a buffer of 50 nm Al0.7Ga0.3Sb, 

followed by the two QWs, 4 nm  Ga0.68In0.32Sb and 8 nm InAs.  The bottom layer of n-doped 

GaSb serves as a global back gate.  The full wafer structure and layer widths is given in 

Appendix 1. 

For fabricating Corbino structures, the first step (Figure 4.1b) is to define the total mesa 

square by photolithography.  The area outside the mesa is etched away using a “cocktail etch” 

solution of H3PO4:H2O2:citric acid:H2O with corresponding ratio 3:5:55:220 mL.  The citric acid 

component is a solution of 1 g monohydrate citric to 1 mL water.  Once the mesa has been 

defined, the photoresist is removed, and an etch solution of 10:5 mL citric acid solution:H2O2  is 

used to remove the InAs cap from the entire wafer (Figure 4.1c).  Photolithography is then used 

again to define the contacts, and an etchant of 1:8 mL NH4OH:H2O removes the layers down to 

the InAs QW in the contact areas (Figure 4.1d).   

Next, Ti (10 nm) and Au (50-100 nm) are deposited using an electron-beam evaporator 

(Figure 4.1e).  As a protective coating, a 20-50 nm layer of Al2O3 is deposited over the entire 

chip using an atomic layer deposition system (ALDS) (Figure 4.1f).  The final etching step is to 

create windows to the contacts via photolithography and an Al2O3 etchant known as Transetch-N 

(Figure 4.1g).   



 108 

Top gates may be added over the mesa area by additional photolithography and 

evaporation steps.  Also, if it seems the contacts have not reached the QWs, the device may be 

annealed in H2N2 forming gas at 250° C for 5 minutes.  More detailed instructions are covered in 

Appendix 2. 

 

 

Figure 4.1: Fabrication procedure for InAs/Ga0.68In0.32Sb Corbino devices.  a) Initial wafer 

structure b) Defining the mesa c) Removing the InAs cap layer d) Defining the contacts e) 

Depositing Ti/Au for the contacts f) Adding a protective layer of Al2O3 g) Opening windows to 

the contacts 

 

4.2  Cryostat System 

 Both conductance and noise measurements were primarily performed in a Janis Research 

Co. cryostat.  In the Janis cryostat, either liquid nitrogen (for measurements at or above 77 K) or 

liquid helium (for measurements between 1.7 and 50 K) is kept in a reservoir surrounding the 

e f g

a b c d
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central annular space where the sample is held.  Samples are mounted on a custom probe with 

both coaxial and twisted pair wiring, and may be positioned to be parallel or perpendicular to 

external magnetic fields, supplied by a superconducting coil magnet.  The annular space is 

continually pumped on, while a needle valve can be opened or closed to allow exchange gas 

from the cryogen reservoir to cool the sample.  Temperature control is tuned by two heaters, one 

in the annular space, and a second directly on the probe. 

 Detailed instructions for filling liquid nitrogen and helium are given in Appendix 3. 

 

4.3  Conductance Measurements  

Differential conductance (dI/dV) measurements are performed by using a summing 

amplifier to superimpose a small sinusoidal voltage signal (0.1-0.5 mV) with relatively low 

frequency (~70-700 Hz) onto a dc bias applied across the sample.  Both bias components are 

supplied by a lock-in amplifier that is synchronized to the frequency of the sinusoidal ac 

component.  This lock-in is set to measure the first harmonic of the I-V curve, while a second, 

also tuned to the same frequency, picks up the second harmonic component.  The current signal 

from the junction is amplified by a current pre-amplifier before being fed to the two lock-ins as 

well as directly to a data acquisition module (DAQ).   

 

4.4  RF Shot Noise Measurements 

 RF noise measurements are useful in that they are less sensitive to 1/f resistance 

fluctuations and low-frequency background noise sources, such as that from the amplifiers.  

Following the work of Wu et al.166 and Reznikov et al.,167 the experimental setup for RF noise 

measurements is outlined in Figure 4.2.168  A square wave is sourced from a function generator 
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to the junction, toggling between 0 V and some Vmax at a frequency on the order of 70 Hz -1 kHz.  

The measurements have two main components: low-frequency current response and high 

frequency (250-600 MHz) measurements of the change in integrated RF noise power.  The two 

components are separated out by bias tees.    

 

Figure 4.2: [Adapted from Ref. 168] Setup diagram for RF noise measurements.  Highlighted in 

blue is the low-frequency signal path for monitoring current response.  Highlighted in red is the 

high-frequency noise measurement scheme, consisting of amplifier chains, bandpass filters, and 

a logarithmic power detector, which feeds to a lock-in as well as directly to the DAQ. 

 

 On the low-frequency side (highlighted in blue in Figure 4.2), a current pre-amplifier 

follows the junction, and then a lock-in amplifier, synchronized to the square-wave, measures the 

current response of the device, which is then digitized by a DAQ.  For devices with low 

resistance (or widely changing resistance), a current-limiting resistance standard is put in place to 

avoid overloading the current amplifier.   
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 The high-frequency side (red in Figure 4.2) measures the RF noise characteristics of the 

junction.  At zero bias, only the Johnson-Nyquist is present, but at Vmax, there is both JN noise 

and shot noise.  The noise signal is transmitted via coaxial cable through a chain of amplifiers, 

then bandwidth limited to approximately 250-600 MHz.  The signal is then fed to a logarithmic 

power detector whose output is transmitted to both a second synchronized lock-in and directly to 

the DAQ.  The recorded noise signal is then the change in integrated noise power, and using the 

gain-bandwidth product, the signal is converted into the average current noise power spectral 

density, ∂ø = ∂ø('=a]) − ∂ø(0), with the direct measurement from the power detector to the 

DAQ as a basis for the absolute noise power.  Appendix 4 describes how to translate the lock-in 

reading of the noise to units of A2/Hz. 

 

4.4.1  Reflection Coefficient Considerations: Equivalent Circuit 

 All coaxial cables used in the RF measurements have 50 W characteristic impedance to 

minimize RF loss and capacitive filtering of the high bias signal.  All electrical components also 

have 50 W characteristic impedance.  Figure 4.3a is the equivalent circuit deduced by P. Wheeler 

for the RF noise setup to determine the correct value of the current noise spectral density from 

the measured power signal.169  One can consider the device being measured as an ideal current 

source of the mean square current fluctuations Œ≤! in parallel with some frequency-dependent 

impedance Zs.  In reality, the noise source is a two-terminal device at RF, terminated at one end 

by m£ = 50Ω.  The current ig and characteristic impedance Zg of the single-port noise generator 

are then 

ŒV = Œ≤
op

opWoÆ
  (4.1) 

and mV = m≤ + m£. (4.2) 
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 If then a transmission line and the RF amplifier chain, both also with 50 W characteristic 

impedance, are added to the circuit, the current delivered to the Z0 is 

Œ£ = ŒV
oq

oqWoÆ
. (4.3) 

The power transferred to the Z0 load is given by 

|Œ£|!m£ = ŒV!m£ = m£Œ≤! '
op

opWoÆ
'
!
. (4.4) 

Figure 4.3b is the diagram for a measurement of the reflectance looking from a 50 W line 

to the noise generator.  The reflectance is  

Γ =
oqVoÆ
oqWoÆ

= op
opWoÆ

. (4.5) 

Therefore the power transferred to the amplifier is  

¥ = m£Œ≤!|Γ|!,  (4.6) 

and the current spectral density is 

〈Œ!〉 = 〈 r

oÆ|s|#’∆é
〉. (4.7) 

GDf is the gain-bandwidth product, a sample-independent quantity, found by using a spectrum 

analyzer.  For example, the gain-bandwidth is about 162 for the setup used in Chapter 5. 

In the limit of m≤ ≫ m£, Γ → 1.  Most samples measured are at least ~ 1 kW, and thus fall in this 

limit.    
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Figure 4.3: [Adapted from Ref. 169] a) Equivalent circuitry for a noise source.  The sample has 

some root mean square current fluctuations is and an effective impedance Zs.  If the device is 

terminated on one side with impedance Z0, it is possible to describe an equivalent circuit with a 

single-port noise generator ig with effective impedance Zg.  b) Reflectance measurement for 

determining the actual power delivered from the sample to the amplifier chain. 

 

 In the latest iterations of the RF setup, the standard room-temperature bias tees have been 

replaced by individual inductors and capacitors placed on a PC board with the sample inside the 

cryostat.  Furthermore, in an effort to precisely calibrate the high frequency noise data, the 

Johnson-Nyquist noise spectra for a resistor over a span of temperatures from 10 K to 300 K 

were measured using a spectrum analyzer.  The amplified power is expected to be of the form 

¥ = u*£
%zÑê§

(§W§Æ)
# + Ë, where A is the gain of the power amplifier, R is the sample resistance, R0 is 

the power amplifier input impedance, and B is the background of the amplifier.  By plotting P as 

FIG. S1: (a) Equivalent circuits for noise current sources. The sample itself has some short-circuit rms

current noise, is, and effective impedance, Zs. Terminating one end of the sample with Z0 results in a

single-port equivalent circuit with rms current noise ig and impedance Zg, as explained in the supporting

text. (b) Schematic of the reflection measurement that is relevant to determining the actual power transferred

from the sample to the amplifier chain.

frequency range, obtained with the approach in Fig. S2. Fig. S4c shows the convolution of the

gain-bandwidth product and |Γ|2. As shown in the previous section, this convolution may be used

to infer the original mean square current fluctuations, i2
s
, from the photodiode noise source. The

results of this procedure are shown in Fig. 3 of the main manuscript text.

Fig. S5 shows DC current-voltage characteristics of the photodiode around its DC operating

point (-45 V) for three of the illumination levels (labeled by the voltages applied to the illuminating

LED) used in the photodiode shot noise measurements. The DC resistance is always much larger

than 50 Ω, but as explained in the main text, this is irrelevant to the measurements at hand. What

does matter is the RF response of the terminated photodiode, and as the |Γ|2 data demonstrate,

the impedance mismatch over the bandwidth of interest is not nearly as severe as one would infer

from purely DC measurements.

3

a

b
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a function of temperature, the aim is to establish the coefficients A and B.   

  

4.5  Low-Frequency Noise Spectroscopy 

 Noise spectroscopy measurements were also performed using a low-frequency (0-100 

kHz) method (Figure 4.4).  The benefit of the low-frequency technique is the ability to clarify 

the absolute magnitude of the noise by confirming the accurate Johnson-Nyquist noise at zero 

bias, SV = 4kBTR, which should be white in frequency aside from parasitic capacitive effects.  

The downside of course is that at nonzero bias these measurements are susceptible to 1/f  

resistance fluctuations.   

 The low-frequency spectroscopy is based on a cross-correlation method similar to that of 

Hashiaka et al.170 and Zhou et al.171  A tunable DC bias is applied to the device by a DAQ 

(National Instruments DAQ6215) through strong LC filters and symmetrically placed 150 kW  

current-limiting resistors to ensure a very clean voltage signal.  Additionally, extra shielding 

from external noise is put in place around both the sample and the wiring.  On each side of the 

sample is a low-noise amplifier chain that individually amplifies the voltage across the sample 

and its fluctuations.  The total gain of each chain is 104.  The signals are then cross-correlated by 

a Stanford Research Systems SR785 spectrum analyzer to find the voltage noise power spectral 

density SV. Amplifier noise is suppressed by the cross-correlation because only noise from the 

device will be correlated across both chains. 
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Figure 4.4: Low-frequency noise measurement setup.  Noise from each side of the device is 

individually amplified, then cross-correlated to suppress contributions from the amplifiers. 

 

 Voltage noise spectra are fit, giving consideration to resistive and capacitive parasitic 

contributions, to the equation 

∂∑,=~a≤ =
V√G

(RW(§t∫#)#
,  (4.1) 

where SV,meas is the total measured voltage noise, g is the total amplifier gain (104), ∂∑ = ∂ø
!*≤! is 

the intrinsic voltage noise power spectral density from the sample, RS is the differential 

resistance at the applied bias, SI is the current noise and the RSC factor denotes the decay of the 

measured spectrum due to the parasitic resistive and capacitive factors.  An example spectrum 

with fit is show in Figure 4.5.  The voltage noise can then be converted to current noise by ∂ø =

√G
§p
#, using Rs found by the differential conductance measurements described above.  
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Figure 4.5: Example of a finite bias spectrum fit to Equation 4.1.  Spectrum includes 

contributions from both Johnson-Nyquist and shot noise, which are both white in frequency 

except for a capacitive roll off toward higher frequencies. 
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Chapter 5 

Current Noise Enhancement via Nonequilibrium 

Phonon Backaction in Atomic-Scale Au 

Junctions 

5.1  Introduction 

 Measurements, by Ruoyu Chen in our group, of ensembles of atomic-scale gold junctions 

found a discrepancy between low bias and high bias measurements of current noise.172  At low 

bias, measurements were consistent with the finite-temperature Landauer-Büttiker picture 

(Section 2.6), but at high bias, the ensemble-averaged excess noise was enhanced above the 

value of SI extrapolated from the low-bias data (Figure 5.1).  For all data sets, the nonlinearity of 

the excess noise is concave upward and independent of the order in which biases were applied, 

implying that the nonlinearity is an intrinsic function of the bias and not due to irreversible 

changes made within the junction.  In exploring possible origins for the superlinear noise, 

quantitative analysis ruled out flicker noise39 and bulk heating of the electrode.173  Other 

candidate mechanisms for enhanced noise consistent with the observed bias dependence included 

modification of the Fano factor due to electron-phonon interactions,174,175 particularly quasi-

equilibrated phonon populations, or local electronic heating from Fermi liquid shear viscosity 

effects.176,177  The observed power law of the noise increase seemed to imply that the electrons 

did not significantly pump local phonon modes.  If the increased noise was modeled instead as 

local electronic heating, however, the enhancement implies an elevated electron temperature of 
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up to 330 K at a bias of 300 mV.  The measured noise was roughly consistent with a model 

accounting for effects of electron viscosity. 

 

Figure 5.1: [Adapted from Ref. 172] Excess noise power as a function of scaled bias for low bias 

(top) and up to high bias (bottom) for three different conductance values (purple = 0.8G0, blue = 

3G0, and red = 5G0.)  The shaded region in the bottom plot corresponds to the top plot.  At low 

biases, the excess noise power is linear with scaled bias, but as bias increases, significant 

nonlinearities are present. 

 

 To further clarify the origin of the enhanced noise, we studied the bias dependence of 

STM-style Au break junctions (Section 1.5) at 77 K.168  The large number of successive breaking 

and reforming cycles of an atomic-scale contact in the STM-style experimental setup provides a 

clear picture of the average system behavior.  During a single breaking cycle, each particular 

junction geometry lasts only a short period of time.  For instance, at low bias, a typical 

(and possibly some electronic heating of the type discussed below)
while shot noise is minimized at suppressions.

After further increasing bias to higher levels, as shown in Fig. 3(b),
significant nonlinearities as a function of scaled bias are present at all
the conductance values, well above the extrapolated linear depend-
ence found at low bias. Here different markers represent different
independent data sets while each color indicates a particular conduc-
tance value. The solid lines are the low bias linear fits. In all the data
sets, the nonlinearity is concave upward and independent of the
order in which the voltages were applied (high to low; low to high;
or interleaved). This indicates that the nonlinearity is an intrinsic
function of the bias, not a result of irreversible changes to the junc-
tions during the sequence of histogram acquisition at different
applied biases. The rather similar Fano factors in the several G0 range
are consistent with our earlier measurements36, and may imply the
involvement of more quantum channels, suggesting an approach to
noise properties similar to those in the diffusive regime48–51.

Discussion
At a given conductance, at comparatively low bias, the measured
noise scales with bias as expected from Eq. (1). At comparatively
high bias, the measured noise increases more rapidly than this

expectation. We must consider possible explanations for this trend
in the noise at high bias. Possible contributors include: flicker noise;
significant heating of the electronic reservoirs (region B in Fig. 1);
electron-phonon inelastic corrections to the noise; and local elec-
tronic heating (in region C of Fig. 1).

Flicker noise is produced by fluctuations in the device resistance
due to scattering of the electrons by dynamical defects52–54. At low
bias, such that the dynamical defects remain effectively at T0, flicker
noise manifests as a voltage noise power that scales quadratically in
the applied dc bias. At higher biases, because of the availablity of
carriers as much as eV above the local equilibrium Fermi level, the
dynamical defects can have effective temperatures (of their ionic
degrees of freedom) that are considerably elevated4. The result of this
ionic heating is increased flicker noise as more defects are able to
participate, and a bias dependence of the voltage noise that is super-
quadratic55,56. The operative question is whether the increased noise
we see at high bias is indicative of this kind of enhanced flicker noise
contribution.

We assess the role of flicker noise in multiple ways: considering the
overall contribution of flicker noise to the total noise signal; exam-
ining the scaling of noise response with RF frequency range; and
examining the expected dependence of noise on bias and junction
conductance. The noise measurements in this work are broadband
and in the rf regime, a frequency range (250 MHz to 600 MHz)
considerably higher than that in which flicker noise is typically mea-
sured. The presence of strong noise suppression at 1 G0 at the highest
biases (see, e.g., Fig. 2) establishes that the bulk of the measured noise
likely results from shot noise of the type described at low bias by Eq.
(1). We have also performed noise measurements with a different RF
filter set (limiting the band to between 400 MHz and 800 MHz) at a
variety of biases. While environmental backgrounds proved more
annoying over that higher frequency band, the relative magnitude
of the noise suppression near values of quantized conductance is
essentially unchanged. This again is consistent with the significant
majority of the total measured noise being shot noise, since one
would expect overall reduced flicker noise at the higher frequencies.

We look at the bias dependence of the noise. In previous measure-
ments36, when looking at 1 G0, where the shot noise contribution is
maximally (but not completely) suppressed, we found residual non-
linearity with bias in the ensemble-averaged noise power at low bias
that was roughly consistent with a flicker noise contribution. We
repeat such an analysis here. Note that the superlinear behavior in
Fig. 3(b) is as a function of scaled bias, not just V. Figure 4 shows the

Figure 3 | Excess noise power vs the scaled bias at (a) comparatively low
bias, and (b) comparatively high bias. The shaded region in (b) is the
domain shown in (a). Colors represent data at different conductances
(purple 5 0.8 G0, blue 5 3 G0, red 5 5 G0), as in Fig. 2. The solid lines are
corresponding linear fits. Ensemble-average Fano factors at 0.8 G0, 3 G0,
and 5 G0 are 0.58, 0.35, and 0.32, respectively. (a) At low biases away from
the noise suppressions, the excess noise power is quite linear as a function
of the scaled bias, consistent with shot noise as in Eq. (1). (b) At higher
biases, significant nonlinearities are present in excess of extrapolations of
the low bias linear dependence on the scaled coordinate. Note that
independent data sets (acquired after tip cleaning and annealing) plotted
in different markers give consistent results for these nonlinearities. The
filled circle symbols correspond to the data sets in (a) and in Fig. 2(b).

Figure 4 | Excess noise at 3 G0 converted into voltage noise power SV as a
function of bias. The solid blue line is the best quadratic fit to the
experimental data, while the dotted blue line is a systematic overestimate
(see text) of the contribution of flicker noise at 1 G0. Any flicker noise
contribution at 3 G0 is expected to be even smaller. Thus, flicker noise is
unlikely to be a compatible explanation for the observed increase in noise
as a function of V.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4221 | DOI: 10.1038/srep04221 4
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conductance plateau lasts for around 100 ms.  By using this method of rapid data collection over 

short time durations with many repetitions, measurements are less susceptible to the junction 

instabilities at high bias seen in mechanical break junction techniques.55 

 77 K was chosen as an appropriate temperature for the measurements, as it is low enough 

to suppress the equilibrium population of the gold optical phonons (~17 meV or 200 K), but it is 

high enough to avoid any large contributions of bulk heating of the electrodes.  Compared to Au 

STM junctions measured at room temperature, those at 77 K also exhibit better temporal 

stability, drastically reducing contributions from transient states during atomic rearrangements 

and allowing for more detailed quantitative analysis.   

 

5.2  Experimental Setup 

 Current noise measurements were performed using the RF technique described in Section 

4.3 and previously reported by our group.169,172,178  Measurements were performed in the Janis 

cryostat with attocube piezo positioners and minicoaxial wiring for RF signals.  The 

environmental temperature of the gold substrate and gold tip were set at 77 K by exchange gas 

from liquid nitrogen in the cryostat reservoir.  Extra care was taken to isolate the system from 

external RF signals and mechanical vibrations, including keeping the reservoir very full and 

performing measurements overnight to avoid vibrations from building construction.  During 

measurements, a thick gold wire, carved at one end into a sharp tip is continuously moved into 

and out of contact with a 300 nm gold film evaporated onto a silicon substrate.  The tip 

movement is controlled by one of the piezo positioners.  Over a period of 4.2 seconds, atomic-

scale junctions are repeatedly formed and broken between the two gold contacts.  

Simultaneously, noise and conductance data are collected at a rate of 200k samples/second.   
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 To collect ensemble averages of the current noise at a given conductance for a range of 

biases, around 1000-1500 breaking traces were acquired at 20 different biases.  Conductance 

histograms were recorded, and the presence of the expected peaks near 1, 2, and 3 G0 with low 

surrounding background was used as the figure of merit for each data set. 

 After collection, the raw data of conductance traces were processed with an automated, 

multistep procedure to remove transition points, leaving only noise and conductance data for 

conductance plateaus, when the junction is in a stable configuration.  The first step in the process 

removes points in the data adjacent to transients in the logarithmic power detector output that 

result from the times when the resistance changes abruptly during breaking.  Next, readings for 

which the background noise level exceeds two standard deviations of the open circuit 

background are removed, as well as the following sixty points, to ensure all spurious data 

surrounding a transient are caught.  After that procedure, points with a conductance not within 

1% of the 20 preceding readings are removed.  Lastly, a final check ensures all remaining data 

points are within 3% of a neighboring point, so that all remaining data is within a stable 

conductance plateau.  This procedure minimizes any artifacts of stepwise changes in the 

conductance that can cause speciously high standard deviations of the noise when the junction is 

undergoing an atomic reconfiguration, despite only a small amount of the data lying in these 

regions.179 

 Excess current noise (∂ø,=~a≤ = ∂ø('=a]) − ∂ø(' = 0)) is averaged over conductance 

bins of 0.01G0, chosen to be small to avoid over-averaging.  The background level that was 

subtracted out for each applied bias was calculated by taking the mean of the measured noise at 

the 10k points with the lowest conductance values at that bias.  These points were chosen as the 
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closest approximation to the broken state (G = 0).  This background was approximately 1´10-24 

A2/Hz for every bias.   

 At finite temperature, the excess current noise is expected to be given by 

∂ø = 4stE+£ ∑ >N
!A

NfR + 2M'+£ coth g
~∑

!zÑê
h∑ >N(1 − >N)

A
NfR  , (5.1) 

which should be linearly dependent on a scaled bias 

u = 4stE+ v
~∑

!zÑê
coth g ~∑

!zÑê
h − 1w.  (5.2) 

The ensemble-averaged Fano factor for each conductance bin is then taken to be  

3 = 	 √≈
(∑@x‰)V√≈(∑f£)

y
.  (5.3) 

The calculated Fano factor is plotted as a function of conductance and compared to the minimum 

Fano factor line, the theoretical plot of the Fano factor in the ideal Landauer-Büttiker regime of 

successive channel openings with full suppressions at points of fully-transmitting channels.  

Using the lowest bias dataset as a reference point, it is then possible to establish an overall 

normalization of the ∂ø('=a]) − ∂ø(' = 0) signal. 

 

5.3  Results and Analysis 

5.3.1  Low Bias Data 

 At low biases, current noise and conductance data agreed well with the Landauer-

Büttiker picture.  Figure 5.2 shows the data and analysis for an example bias of 160 mV, applied 

across both the junction and the series-limiting resistor.  The conductance histogram (Figure 

5.2a) displays the large peak at 1G0, with smaller peaks at 2 and 3G0, as expected for Au 

junctions.17,169,179  Figure 2b is the calculated ensemble-averaged Fano factor (Equation 5.3) as a 

function of conductance, with the standard error.  Standard error was calculated as 
-

√Z
, where s is 
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the standard deviation of Equation 5.3 for a given conductance bin, and N is the number of data 

points in the bin.  In the range of roughly 0.8-3G0, the data closely follows the theoretical line for 

the case of individual transmission channels opening sequentially.  Relatively clean successive 

channel addition has also been observed in previous studies.51,53,55  At higher conductances, more 

channel mixing is expected as the number of possible atomic configurations grows rapidly with 

G.   
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Figure 5.2: [Adapted from Ref. 168] Example data and analysis for low bias measurements (160 

mV). a) Conductance histogram with typical peaks at integer values of G0. b) Ensemble averaged 

Fano factor as a function of conductance with the theoretical minimum Fano factor line shown 

in black.  The Fano factor is suppressed at integer values of G0, consistent with Landauer-

Büttiker formalism.  c) Transmittance histograms of the first six channels for G = 1.08, 2.18, and 

3.07G0, with respective Fano factors of 0.07, 0.09, and 0.09, calculated using the inequality in 

Equation 5.4.  The values seem consistent with a successive channel opening picture. 
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 In Figure 5.2b, we find that points below ~0.75G0 are less consistent, with many points 

lying in the “forbidden” regime below the theoretical F(G) line.  During the course of a breaking 

cycle, comparatively little data is collected in this conductance range because junction 

configurations are considerably less stable for G < 1G0, and therefore most data points are 

removed by the transient-removal analysis program.  The small number of counts for this range 

is apparent in the conductance histogram.  Consequently, the noise data for conductances below 

~0.75G0 were much sparser and more broadly distributed than the high conductance data.  

Additionally, the RF detection efficiency seems to worsen for low conductance junctions.  

Therefore, we attribute the data within the forbidden regime to be due to the sparseness and 

subsequently inadequate averaging in this range, as well as the degraded RF detection.  We 

acknowledge that Fano factors below the theoretical line have been observed by Vardimon et al. 

in molecular junctions between ferromagnetic electrodes due to spin-polarized conduction,63 but 

it is very unlikely to be applicable to this system.  Thus, we exclude this low-conductance data 

from our analysis. 

 To examine the role of channel transmittances in the conductance and noise of the 

junctions, we followed the example of Vardimon et al. to calculate the ti values based on the 

measured conductance and Fano factor.53  As described in Section 2.6, if the junctions are treated 

within the Landauer-Büttiker approach as coherent quantum conductors with transverse 

dimensions on the order of the electron Fermi wavelength, the conductance of the junction can 

be considered as the sum of the conductances of individual channels.  Experimentally, the Fano 

factor was found by Equation 5.3 from the shot noise dependence on applied bias, and the 
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conductance was read by the lock-in (Section 4.3).  The general assumption is that the derived 

transmission coefficients must satisfy the following inequalities 

+ − ∆+ ≤ +£ ∑ >N
Z
NfR ≤ + + ∆+ and 3 − ∆3 ≤

∑ D[
¨
[{´ (RVD[)

∑ D[
¨
[{´

≤ 3 + ∆3, (5.4) 

where DG = 0.01G0, based on the bin size, and DF = 
-

√Z
, the standard error of the ensemble 

averaged Fano factor at each conductance.  The process also operates under an additional 

constraint, >N ≥ >NWR, enforcing sequential channel opening.  The bin size for the transmission 

coefficients is set to Dt = 0.005 to ensure a finite number of solutions.  This model is valid in the 

limit that the transmission of the last channel goes to zero.  Thus, we chose to use N = 6 for 

conductances up to 3G0, and at low bias the last three channels all tend toward zero (Figure 

5.2c).  For gold, six channels is a reasonable limit for the low-conductance regime, since, as 

discussed in Section 1.5, the number of channels for a single atom contact is limited by the 

number of atomic valence orbitals.23  Gold is a monovalent metal, implying single atom 

conduction is carried out by one transmission channel, namely the s valence orbital, such that 

each gold atom should contribute only one channel per 1G0 of conductance.23,53  For + ≤ 3+£ 

then, there should ideally only be three conduction channels involved in transport through the 

junction.   

 Given the described criteria, a Monte Carlo simulation produces an array of possible sets 

of transmission coefficients for six channels for a given conductance and Fano factor.  

Normalized histograms are then created from these arrays to portray the most likely values for 

each transmission coefficient.  Figure 5.2c shows example histograms for a bias of 160 mV at 

conductances of 1.08, 2.18, and 3.07 G0, with respective Fano factors 0.07, 0.09, and 0.09.  The 

results are quantitatively consistent with those of Vardimon et al. in Au junctions at 4.2 K.53  

Furthermore, similar to Bürki et al. and Vardimon, we observe single channel saturation up to 
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1G0, but as conductance increases above this, contributions from partially opened channels also 

increase.53,180,181  We therefore limit our analysis and comparisons between low and high bias 

transmittance distributions to the few channels regime of + < 3+£. 

 

5.3.2  Bias Dependence 

 Similar to the aforementioned room temperature studies, we observe a superlinear 

dependence of measured noise on the scaled bias at high applied biases.  In this high bias regime, 

the Fano factor rises considerably above the theoretical minimum Fano factor line.  Figure 5.3 

shows the Fano factor as a function of conductance for five example biases, demonstrating the 

progression of the Fano factor rising with increasing bias.  The enhancement at high biases was 

independent of the order in which the biases were applied, suggesting it is an inherent bias 

dependence and not due to irreversible changes to the junction during data acquisition.  

Additionally, the tip-to-substrate junction was periodically annealed at currents of 2-5 mA to 

minimize effects of work-hardening or contaminants.25 
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Figure 5.3: [Adapted from Ref. 168] Ensemble averaged Fano factor as a function of 

conductance for a sample of increasing biases, minimum Fano factor line shown in black.  As 

bias is increased, the Fano factor rises above the values expected for the theoretical successive 

channel opening case.  Note applied bias shown is bias across the junction, 'a‚‚ª =

' R!ß£®

R!ß£®W(§p—x=C’)
, where V is the total bias applied by the function generator, Rstand is the 

resistance standard in series with the junction, and G is given in units of G0. 
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theoretical sequential channel opening line (Inset).  In general, the trend appears to be 

conductance-dependent, with the spread in data increasing with increasing bias, but for all 

conductances, there is some trend of enhancement.  Furthermore, the enhancement factor appears 

to be even larger at 77 K than that observed in the room temperature measurements.  For 

example, at 1.08 G0 (Figure 5.4a) we observe a roughly four-fold enhancement of the Fano 

factor, compared to a less than twofold enhancement around the same conductance over a similar 

bias range at room temperature. 

 

Figure 5.4: [Adapted from Ref. 168] Ensemble averaged Fano factor as a function of bias across 

the junction for conductances with similar values on the minimum Fano factor line (Insets).  

While the trend seems conductance dependent, there is some enhancement at every conductance.   
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resistive heating of the bulk electrodes.  While the heating of the bulk electrodes when the 

junction is biased can increase the level of Johnson-Nyquist noise, and that perceived increase 

would appear in the measured lock-in signal, this effect is set by the magnitude of the dissipated 

power.  The thermal conductivities of the tip and metal film were estimated for our experimental 

conditions to be much too small to explain the large magnitude of noise increase.   

 In considering possible mechanisms of noise enhancement, we first considered the 

models proposed by the room temperature work:  1) local heating of the electronic distribution 

and 2) electron-phonon interactions.  Unlike interactions with equilibrated phonon populations, 

which should freeze out at decreased temperatures, intrinsic electronic heating due to Fermi 

liquid viscosity effect would be expected to have a comparatively weak temperature dependence, 

since the Fermi temperature of gold (~64,000 K) is always much larger than experimentally 

accessible temperatures.  Attempts to model the 77 K data as a rise in the local effective electron 

temperature from the measured noise and Fano factor using the method described by Chen et 

al.172 were inconsistent with the room temperature results, yielding either negative temperature 

changes or temperature changes that were orders of magnitude larger than the room temperature 

values for similar conductances.  The very simple model for the room temperature behavior 

assumed local heating proportional to IV and dominant thermal transport derived from the 

electronic thermal conductivity based on the Wiedemann-Franz law.  Therefore the locally-

limited increase in the electronic temperature, in other words the widening of the electronic 

distribution functions going into the junction, would be approximately independent of 

conductance.  The 77 K data, however, clearly shows some dependence of the enhancement on G 

and the enhancement also seems to be larger at lower temperature, so we abandon local heating 

as a candidate mechanism and turn to other possible explanations for the noise enhancement.   
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 Of remaining possible options for the increase in observed Fano factor, we first consider 

that the distribution of conductance channel transmittances, ti, are changing with bias.  In other 

words, higher biases could alter the combination of ti that typically correspond to each 

conductance according to the minimal channel mixing picture.  Changes in the preferred stable 

junction geometry could arise from the large current densities in the high bias regime.  Indeed, 

for the largest biases applied in this study, the nominal current density is comparable to those 

employed in electromigration techniques, a process by which atoms of a material shift due to 

momentum transfer from conduction electrons.182  It is conceivable then, that gold atoms in the 

junction may shift in response to the large current densities and acquire different stable 

configurations that may be unrelated to those that favor fully transmitting channels.   

 If this were the dominant effect, one would expect to observe a strong bias dependence in 

the conductance histograms, such as broadened peak widths or the appearance of new or 

different conductance maxima for data acquired at high biases, reflecting a preference for 

junction geometries that favor increased mixing.  Some signs of this are seen in Figure 5.5; the 

overall number of counts decreases with increasing bias, despite the data being drawn from the 

same number of breaking traces because the traditionally stable junction configurations are less 

so at high bias.  For example, at low bias, a typical 1G0 conductance plateau during breaking 

lasted on the order of 100 ms, while at high bias, this lifetime dropped to 10 ms.  Like in 

electromigration processes, at sufficiently large current densities, momentum may be transferred 

from conduction electrons to atoms at surfaces or grain boundaries, causing them to be displaced.  

In addition to large current densities, the high electric fields due to large potential differences 

over short distances across the junction may also contribute to mechanical instability.  As a 

result, configurations that are very stable at low biases are significantly less so at high biases, 
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which is reflected by smaller peaks in the histograms.  When the histograms are normalized to 

their 1G0 peak, we find the histogram maxima are also asymmetric at high bias, developing 

shoulders toward lower conductance values (Figure 5.5 Inset), and we observe several additional 

peaks of smaller intensity, indicating a larger number of relatively stable configurations at non-

integer conductance values.  Compared to the integer G0 peaks, however, these additional 

features are less frequent and show no regular trend with bias.  Overall, the basic shape of the 

histograms remains qualitatively similar.  It remains an open question, then, whether dramatic 

changes in the transmittances can occur while keeping the general shape of the histogram 

consistent.  Alternatively, large current densities could also contribute to inelastic processes in 

the junction, which may lead to weakening the stability of junction configurations, thus 

decreasing peak heights.   
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Figure 5.5: [Adapted from Ref. 168] Conductance histograms for increasing bias applied bias.  

The main plot illustrates the decreasing number of stable junction configurations achieved at 

high biases.  The histograms in the inset were normalized to the 1G0 peak to emphasize the 

changes in overall shape as bias is increased.  At high biases, we note a widening of the nG0 

peaks, as well as new peaks at non-integer conductances. 
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channel, accompanied by a broadening of all channel contributions as bias increases.  According 

to Equation 5.1, at finite temperature, noise should be maximized for equal contributions from all 

involved channels.  It is therefore not surprising that an enhanced Fano factor can be explained 

by greater contributions from more channels.  While this seems reasonable from a mathematical 

standpoint, it is unclear what physical processes would cause a change in a channel’s 

transmittance, particularly a decrease in the contribution by the primary channel from a fully 

transmitting state. 

 

Figure 5.6: [Adapted from Ref. 168] Transmission coefficient histograms for a) 0.8G0, b) 

1.08G0, and c) 2.18G0 to demonstrate how bias-dependent channel mixing could account for the 

enhancement of the Fano factor. 
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bias eV, the vibrational quantum ℏ‡, and the broadening of the electronic states G; and the 

coupling of the local vibrational mode to the bulk phonons.  The majority of theoretical 

predictions have been performed under the assumption of a single electronic channel and without 

ensemble averaging considerations.  Two limiting cases are of particular relevance to this work:  

1) thermalized phonon populations, assuming relaxation between the local vibrational mode and 

the bulk phonons is fast, so that the population of the local vibrational mode is assumed to be 

thermally distributed at the temperature of the substrate; and 2) strongly nonequilibrium 

vibrational populations, such that the local vibrational mode’s population is strongly athermal 

and predominantly driven by coupling to conduction electrons with energies sufficient to excite 

the mode. 

 Generally, the Fano factor is expected to change when the applied bias across a system 

exceeds the characteristic energy of the phonon mode. 174,175,182–187  The particular modification 

of F depends on both the total transmittance of the junction174,175,184,185 and on the coupling of the 

conductance channels to the phonon degree of freedom.  In previous measurements of individual, 

single-channel Au point contacts at cryogenic temperatures and low biases,55 discrete changes in 

F were observed at biases near the Au optical phonon energy (17 meV), with either increases or 

decreases in F with increasing bias depending on the transmittance of the single dominant 

channel.  Likewise, in individual electromigrated Au junctions with multiple channels, 

qualitatively similar features have been reported at higher threshold energies.188 

 The environmental temperature of 77 K (kBT~ 6.6 meV) was chosen to fulfill the 

condition stE < ℏ‡ for the Au optical phonons.  Thus, thermal phonon populations should be 

greatly reduced relative to the room temperature case (kBT~ 26 meV).  If the previous room 

temperature bias-dependence of F was due to thermalized phonon populations, then it would be 
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reasonable to expect the enhancement to be considerably less at 77 K.  The greater enhancement 

at 77 K over 300 K, then, implies that coupling to thermal phonon populations is unlikely to be 

the mechanism behind the increase in F with bias. 

 In addition to effects due to thermalized phonon populations, theories also suggest that a 

nonequilibrium phonon distribution can enhance the Fano factor in the case of a single channel.  

Models suggest that the large current densities arising from high biases passing through atomic-

scale junctions could excite athermal phonon populations.  In theories that assume strong 

pumping of the local phonon modes by the electrons predict contributions to the noise with 

voltage dependences of V3 and V4.174,175,187  In the single transmission channel model of Novotný 

et al.,174,175 the kth moment of the inelastic current depends on voltage as V2k, so that the current 

noise (the second moment of the current) should increase as V4 when the primary inelastic 

process of the conduction electrons is interactions with nonequilibrium phonons.  No precise 

calculation exists for the multi-channel or ensemble-averaged case, though. 

 Furthermore, this model contradicts the expected bias dependence for coupling to a 

phonon mode with a fixed average population (such as the thermally populated optical phonons) 

versus backaction of current-driven fluctuations of the phononic populations.  The dependence of 

current noise on bias voltage in the presence of a thermally equilibrated local phonon population 

is expected to be at most V2.  In the limit of M' > ℏ‡  and nonequilibrated phonons, the 

dependence of noise is expected to be V4.  Figure 5.7 shows attempts to pull out the dominant 

power law of SI as a function of V.  Though the variation within the ensemble average is large 

enough to make constraining polynomial coefficients difficult, it is possible to plot the excess 

current noise as a function Vn for n = 1-4 to find the best fit power law.  Doing so, the data tends 

toward linearity as n approaches 4, suggesting SI ~ V4.   
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Figure 5.7: Excess noise as a function of Vn as an attempt to pull out the dominant power law of 

the bias dependence of the noise.  While it is difficult to constrain fits to the function form of a 

four-term polynomial, we can plot the excess noise versus Vn and determine the dominant power 

law by seeing when SI(Vn) appears most linear.  We find the data tends toward linearity as n® 4. 

 

 Based on models that consider strong pumping of local phonon modes,174,175,182–187 at 

higher temperatures, one would expect the equilibrium contribution to dominate, while at 

cryogenic temperatures, the non-equilibrium, fluctuating populations should be the primary 

mechanism.  Though at both 77 K and 300 K, the shot noise was larger than expected, the degree 

of Fano factor enhancement at room temperature were much smaller than those observed at 77 

K.  For example, at room temperature, at a conductance of 3G0 the Fano factor increased from 

0.35 at low bias to about 0.45 at approximately 225 mV, a roughly 30% increase.  In our 

observations at 77 K for a conductance of 3.12G0, the inferred Fano factor rose from about 0.08 
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at 100 mV to 0.28 around 225 mV, a 250% enhancement.  The stronger bias dependence at 77 K 

versus 300 K may agree with coupling to nonequilibrated phonons as a good candidate 

mechanism for the superlinear dependence of the Fano factor at high bias.   

 While this model seems to describe the data relatively well, it must still be noted that it 

was originally constructed assuming a single conduction channel, which is distinct from and 

simpler than our case of multiple channels and ensemble averaging over many junction 

configurations.  Though it has been argued that the multi-channel case should display the same 

asymptotic behavior as the single-channel case,174 the theoretical treatment of ensemble 

averaging is more complicated and has not been considered in full. 

 Another relevant aspect is the limit of the weak electron-phonon coupling theory, under 

which this model is developed.  Namely, one must discern what circumstances produce strong 

coupling.  In previous studies of atomic-scale gold junctions, the I-V characteristics appeared 

Ohmic even at high bias, suggesting any inelastic contributions to the current are small.  Fitting 

our current noise data for 0.8G0 (the best approximation for single-channel transport) to the 

model by Novotný et al.,175 we calculate the dimensionless coupling constant |~V‚q ≈ 0.002.  

Typically electron-phonon coupling is considered weak for |~V‚q < 0.1, so the system appears 

to be well in the limit of weak coupling.  The bias dependence of noise in the strong coupling 

limit has not yet been thoroughly calculated.   

 Experimentally, studies of flexible mechanical break junctions where it is easier to hold a 

junction at a particular conductance would be beneficial to measure both current and noise as 

bias is swept into the high bias limit.  This would allow a direct comparison of the bias 

dependence in the first two moments of the current for a single junction, thereby giving a clearer 

picture of whether enhancement of the noise follows the predicted bias dependence for phonon 
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contributions.  The conductance dependence may also be clarified by comparing junctions of 

different configurations to determine if noise increases for all configurations or if as seen in the 

work by Kumar et al.55, it decreases for certain transmittances.  Studies of this nature are 

essential for confirming the nature of the observed noise enhancement in the high bias limit.   

 

5.4  Conclusions and Further Progress 

 In this chapter we examined the bias dependence of the ensemble averaged Fano factor in 

STM-style gold junctions at 77 K.  At low biases, the Fano factor exhibits the behavior predicted 

by the Landauer-Büttiker formalism, but at high biases, the Fano factor is enhanced above the 

theoretical minimum line.  In considering possible explanations for the enhancement, we ruled 

out mechanisms including flicker noise, bulk heating of the electrodes, and the model of 

electronic heating proposed by the work at room temperature.  Our leading potential processes 

for the source of the increased noise are:  1) increased channel mixing at high bias; and 2) back-

action by current driven phonon populations.  Current densities on the order of those used in 

electromigration could also be responsible for rearrangement of the atoms in the junction  such 

that different geometries become stable at high biases.  A reordering of the junction atoms would 

result in more channels being involved in transport than is expected for a given conductance, 

leading to an increase in the Fano factor.  While this explanation works well computationally to 

derive an increase in the Fano factor, the conductance histograms still point to a preference of 

fully transmitting channels.  Additionally, the large current densities at high biases in atomic-

scale junctions could excite nonequilibrium phonon populations, which in turn inelastically 

scatter conduction electrons.  In the single-channel, single-junction picture, inelastic backaction 

of these fluctuating phonon populations is expected to increase the noise and to have a stronger 
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dependence on bias than interactions with equilibrium phonon populations.  While this agrees 

with the higher level of enhancement observed at a temperature below the gold optical phonon 

energy, there is still no full theoretical analysis of this effect including multi-channel transport 

and ensemble averaging effects.  Experimentally, studies using mechanical break junctions 

would be useful for probing the effects of inelastic interactions by simultaneously measuring the 

first two moments of the current in a single junction as a function of increasing bias. 
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Chapter 6 

Noise Measurements in InAs/GaSb Quantum 

Well Structures 

 As introduced in Chapter 3, inverted InAs/GaSb composite quantum wells were theorized 

in 2008 by Liu et al.140 and in 2011 were experimentally shown by Knez et al.141 to demonstrate 

the gapped 2D bulk and 1D helical edge modes characteristic of a two-dimensional topological 

insulator.  Surprisingly, the helical edge modes persisted even with sizable bulk conduction and 

displayed only a weak dependence on magnetic field, a consequence of the hybridization gap 

opening away from the zone center.141  These structures offer numerous benefits over the initial 

HgTe 2DTIs.  Firstly, the mercury content of those devices imposes stringent fabrication 

restrictions, and in general, the processing and micro- and nanofabrication techniques for III-V 

semiconductors, including InAs and GaSb, are very well developed compared to II-VI systems 

such as HgTe.  Additionally, the QSH phase in HgTe QWs can only be tuned by the width of the 

well.  The band structure of InAs/GaSb, however, can also be continuously tuned189 to the 

topological insulator state by variable gate voltages, allowing for quantitative comparison of the 

normal and topologically insulating states within a single sample.  InAs/GaSb also has low 

Schottky barriers to most metals compared to HgTe/CdTe.  

Since their initial discovery, further studies have sought to confirm the helical, nontrivial 

nature of the edge states by suppressing the bulk conductivity through doping dilute silicon 

between the InAs and GaSb QWs144 and by replacing the GaSb quantum well with a Ga(In)Sb 

alloy.190  This chapter will describe two noise studies in InAs/GaSb quantum well devices: the 
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first in Hall bar structures of Si-doped InAs/GaSb, and the second in Corbino geometries of 

InAs/Ga0.68In0.32Sb. 

 

6.1  Band Structure of InAs/GaSb Quantum Wells 

 The three semiconductors InAs, GaSb, and AlSb form a lattice-matched materials set 

called the 6.1Å Family for the approximate value of their lattice constants.191  The 6.1Å Family 

are Type-II semiconductors, meaning they exhibit a staggered gap band structure.  The room 

temperature energy gaps of the family range from 0.36 eV in InAs to 0.78 eV in GaSb to 1.61 in 

AlSb.  Figure 6.1 shows the band lineups for the 6.1Å Family.  The most interesting feature is 

the broken band gap alignment of InAs/GaSb heterostructures, first observed by Sakaki et al. in 

1977.192  The bottom of the conduction band of InAs is about 150 meV below the top of the 

valence band of GaSb,191 resulting in charge transfer between GaSb and InAs layers and an 

inherent electric field at the interface, which allows for the tuning of the band structure with 

external electric fields.189  The valence band of AlSb is about 0.4 eV lower than that of GaSb, 

while its conduction band is about 0.4 eV higher.  This leads to a very large conduction band 

offset between InAs and AlSb of about 1.35 eV,193 making AlSb a very good quantum well 

barrier to confine both electrons in InAs and holes in GaSb layers.   
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Figure 6.1: [Adapted from Ref. 191] Band lineups for the 6.1 Å family of semiconductors.  Dark 

shaded areas represent energy gaps. 

 

Figure 6.2a is an example of an InAs/GaSb composite quantum well (CQW) structure 

with AlSb as the well barriers.  As a consequence of the unique band alignment of 

InAs/GaSb/AlSb and the negative effective mass of holes, the electron subband (InAs) and the 

hole subband (GaSb) are localized to two different quantum wells in immediate proximity.  The 

broken band gap alignment should imply equal densities of both electron and hole gases in the 

inverted CQW.  Due to a high density of surface states, however, the Fermi level is typically 

pinned at around 130 meV above the bottom of the bulk conduction band of InAs.194   Therefore, 

metal-InAs interfaces do not form significant electron-blocking Schottky barriers.191  Also, 

depending on the CQW width parameters, gating is required to induce holes into the GaSb layer.  
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comprehensive compilation of band parameters, see Ref. [3].

The most exotic lineup is that of InAs/GaSb hetero-
junctions, for which it was found already in 1977 by
Sakaki et al. [1], that they exhibit a broken gap lineup:
at the interface, the bottom of conduction band of InAs
lines up below the top of the valence band of GaSb,
with a break in the gap of about 150 meV (Fig. 1). It
was probably this remarkable discovery that triggered
much of the interest in the entire 6:1 !A family already
early in the evolution of MBE technology.
The observation of a broken-gap lineup was not

completely unexpected. In his 1977 pseudopotential
theory of heterojunction band lineups, Frensley [4] had
raised the likelihood of such a lineup. The Harrison
LCAO theory of band lineups, also published in 1977
[5], yielded a similar prediction.
When replacing Ga with Al, the valence band drops

by about 0:4 eV, closing the broken gap and leading to
a weakly staggered lineup. At the same time, the con-
duction band rises by about 0:4 eV, leading to an ex-
ceptionally large InAs/AlSb conduction band o"set of
about 1:35 eV [6]. It makes possible very deep quan-
tum wells and very high tunneling barriers, of great
interest for both research and device applications.
Much of the work on heterostructures between

InAs and the antimonides went beyond the use of
binary AlSb or GaSb, going to ternary alloys like

(Al,Ga)Sb, (Ga,In)Sb, or Al(Sb,As). The principal
motivation for the use of (Al,Ga)Sb with about 10
–20% of Ga—a substitution that actually reduces the
lattice mismatch—is to enhance the chemical sta-
bility of AlSb against oxidation. An accompanying
reduction in the large height of the electron barrier is
largely inconsequential, but the accompanying reduc-
tion in the residual gap at the interface (the energy
di"erence between the InAs conduction band and the
AlSb valence band) can lead to leakage problems in
gated structures.
Replacing some of the Sb atoms in AlSb by As

atoms has the opposite e"ect: the energy gap increases,
but the valence band drops by more than the energy
gap increase, hence the conduction band actually drops
in energy, eventually leading to a conventional strad-
dling lineup [7]. Finally, if In is substituted for Ga,
the energy gap narrows. Superlattices between InAs
and either (Ga,In)Sb, or Al(Sb,As) are no longer lat-
tice matched, but as long as the strain does not sig-
ni#cantly exceed 1%, it does not necessarily lead to
mis#t dislocations in su$ciently thin layers. Instead,
the strain leads to a reduction of the residual gap, a
property utilized for long-wavelength infrared detec-
tors, discussed in Section 6.
A #nal lineup property—of a di"erent kind, but of

great importance in all applications involving elec-
tron transport through InAs—concerns clean metal–
InAs interfaces: the interface Fermi level is pinned
at about 130 meV above the bottom of the conduc-
tion band [8]. Hence, metal–InAs contacts do not form
electron-blocking Schottky barriers.
Given the limitations of space, the present review is

necessarily incomplete, concentrating on selected as-
pects of heterostructures between InAs and (Al,Ga)As
with varying Al:Ga ratio. Antimonide-only het-
erostructures are ignored, as are conventional devices,
such as FETs and RTDs, in which the narrow gap of
InAs plays only an incidental role. Additional details
of some of the material presented here can be found
in a longer 1999 review by Kroemer and Hu [2], but
even there the coverage is by no means complete.

2. MBE growth

The MBE technology of both InAs and AlSb has
been worked out to the point that the growth of such
structures is now fairly routine. Following earlier
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Figure 6.2: [Adapted from Ref. 140] a) Composite quantum well of InAs/GaSb with AlSb 

barriers. b) Schematic band structure diagram of InAs/GaSb.  The dashed line indicates the 

crossing of E1 and H1 in the inverted regime at kcross.  The gap opened due to the hybridization 

of the bands is shown as Eg.   

 

Much like in the previously discussed HgTe QWs, the width of the InAs/GaSb CQW 

defines two different regimes for the system: the normal regime, where the valence band lies 

below the conduction band, and the inverted regime, where the band order with respect to energy 

is reversed.  In the infinite quantum well approximation, the energy difference from the bottom 

of the quantum well to bottom of the first electron or heavy-hole subband (E1 and H1, 

respectively) is inversely proportional to square of the quantum well width and the electron or 

hole effective mass.  It follows, then that as the CQW becomes narrower, the E1 subband is lifted 

up and the H1 subband is pushed down.  Thus, when the QWs are below some critical thickness, 

the InAs electron subband (E1) is pushed above the GaSb heavy-hole subband (H1), resulting in 

a normal narrow-gap semiconductor structure.  If the CQW thickness is increased, however, the 

E1 band will be lowered while H1 band rises.  After some critical thickness, E1 will sink below 

behavior. This hybridization gap was later demonstrated in
experiments [9 ,10]. Therefore, just like in the HgTe=CdTe
QW, the inverted regime of InAs=GaSb QW should be a
topologically nontrivial QSH phase protected by the bulk
gap.

This simple conclusion is complicated by the unique
features of type-II QW: the electron subband and hole
subband are separated in two different layers. There are
several separate consequences of this fact. First, the hy-
bridization between E1 and H1 is reduced, but this is just a
quantitative correction. Second, since there is no inversion
symmetry in the quantum well growth direction, SIA terms
may be large enough to compete with the reduced hybrid-
ization. In addition, BIA may also play a role. Therefore,
both SIA and BIA must be included properly to make a
correct prediction, while in HgTe=CdTe QW these two
types of terms were ignored because BIA terms are small
when compared with the gap, and the QW were symmetric
which minimizes SIA. Finally, since the electron and hole
subbands lie in two different layers, there is an automatic
charge transfer between the layers which yields a coex-
istence of p-type and n-type carriers. Consequently, a self-
consistent treatment of Coulomb energy is necessary to
account for this effect. We will discuss all of these issues
and conclude that the QSH phase exists in an experimen-
tally viable parameter range.

These bulk systems have zinc-blende lattice structure
and direct gaps near the ! point and are thus well described
by the 8-band Kane model [16]. We will construct an
effective 4-band model using the same procedure as the

Bernevig-Hughes-Zhang (BHZ) model [1], albeit a more
complex one due to the SIA and BIA terms. The
Hamiltonian naturally separates into three parts:

 H ! H0 "HBIA "HSIA: (1)

In the basis fjE1"i; jH1"i; jE1#i; jH1#ig, and keeping
terms only up to quadratic powers of k, we have

 H0 ! !$k%I4& 4"
M$k% Ak" 0 0
Ak# #M$k% 0 0

0 0 M$k% #Ak#
0 0 #Ak" #M$k%

0
BBB@

1
CCCA;

(2)

where I4& 4 is the 4 & 4 identity matrix, M$k% ! M0 "
M2k2 and !$k% ! C0 " C2k2. This is simply the
Hamiltonian used by BHZ. Two different atoms in each
unit cell breaks bulk inversion symmetry and leads to
additional terms [17 ]. When projected onto the lowest
subbands the BIA terms are

 HBIA !
0 0 "ek" #"0

0 0 "0 "hk#
"ek# "0 0 0
#"0 "hk" 0 0

0
BBB@

1
CCCA: (3)

Finally, the SIA term reads

 HSIA !
0 0 i"ek# 0
0 0 0 0

#i"'ek" 0 0 0
0 0 0 0

0
BBB@

1
CCCA: (4)

Here we recognize the SIA term as the electron k-linear
Rashba term; the heavy-hole k-cubic Rashba term is ne-
glected. The parameters "h , "e, "0, "e depend on the
quantum well geometry.

Now we address the QSH phase transition. Without
HBIA and HSIA the Hamiltonian is block diagonal and
each block is exactly a massive Dirac Hamiltonian in $2"
1%d. This is the BHZ model and from their argument we
know that there is a topological phase transition signaled
by the gap-closing condition M0 ! 0, and the system is in
QSH phase when M0=M2 < 0. When HBIA and HSIA terms
are included, the two blocks ofH0 are coupled together and
the analysis does not directly apply. However, the QSH
phase is a topological phase of matter protected by the
band gap [3,5 ,6]. If we start from the HamiltonianH0 in the
QSH phase and turn on HBIA and HSIA adiabatically, the
system will remain in the QSH phase as long as the energy
gap between E1 and H1 remains finite. With realistic
parameters for InAs=GaSb=AlSb QW obtained from the
8-band Kane model, the adiabatic connection between H0
and the full Hamiltonian H was verified for the proper
parameter regime, which supports the existence of a QSH
phase in this system. Though the BIA and SIA terms do not
destroy the QSH phase, they do modify the quantum phase
transition between the QSH phase and normal insulator
(NI). The transition (gap-closing) will generically occur at
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FIG. 1 (color online). (a) Band gap and band offset diagram
for asymmetric AlSb=InAs=GaSb quantum wells. The left AlSb
barrier layer is connected to a front gate while the right barrier is
connected to a back gate. The E1 subband is localized in the
InAs layer and H1 is localized in the GaSb layer. Outer AlSb
barriers provide an overall confining potential for electron and
hole states. (b) Schematic band structure diagram. The dashed
line shows the crossing of E1 and H1 in the inverted regime.
Hybridization between E1 and H1, opens the gap Eg .
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H1, and the system will be in the inverted state.  Since E1 disperses upward and H1 disperses 

downward, this naturally leads to an intersection point kcross between the two bands (Figure 

6.2b).   

The inverted regime is especially interesting for use in quantum spin Hall insulator 

studies due to the coexistence of electron and hole quantum wells.  Though the inverted state was 

initially thought to be semimetallic, M. Altarelli theoretically demonstrated that due to the 

mixing of E1 and H1, a small hybridization gap opens, resulting in bulk insulating behavior 

characteristic of QSHIs.195  Experimental evidence of this hybridization gap was demonstrated 

by Yang et al.196 and Lakrimi et al.197  Due to the proximity of the QWs, a real nonzero coupling 

constant allows for penetration of the electronic wavefunction into the hole layer.  Effective mass 

theory198 implies this penetration is small, such that when the in-plane momentum and carrier 

energy in the two wells are nearly equal, they will hybridize.  The electron and hole states, then, 

are indistinguishable.  The hybridization lifts the degeneracy at the point in k-space where the 

dispersion relations of the electrons and holes cross, kcross, and an anti-crossing of the two 

branches results in a “mini-gap” D on the order of 2-5 meV.189,195,196,199–202  The size of the gap 

depends on the strength of the coupling between the electrons and holes. 

 

6.1.1  Electron-Hole Hybridization 

The simplest model of the electron-hole hybridization involves a two-band Hamiltonian 

with uncoupled electron, |J~⟩, and hole states, |Jq⟩, as the basis: 

¯ = �
i~ '(s)

'(s)∗ iq
Ü,  (6.1) 
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where i~ =
ℏ#z#

!=Ï
 and iq = iV£ −

ℏ#z#

!=}
 are the uncoupled electron and hole energies, respectively, 

and Eg0 is the relative separation between the E1 and H1 subbands.  In this simplified approach, 

we ignore the effects of the self-consistent potential, which would only shift the band edges of 

the quantum well, and therefore to lowest order only affect the value of Eg0.203   

 Coupling between the wells is incorporated via the off-diagonal term V(k).  Tunneling is 

only allowed between states with the same angular momentum; in other words, the states must 

have the same symmetry.  Therefore the heavy-hole state (/ = @

!
,|M = ± @

!
)  at the center of the 

subband cannot hybridize with the electron states (/ = R

!
,|M = ± R

!
).  Away from the center of 

the band at some finite in-plane wavevector however, the heavy-holes are mixed with the light-

holes component (/ = @

!
,|M = ± R

!
), making hybridization with electrons possible.204,205  The 

coupling is further restricted by parity conservation.  The parity operator returns the spatial 

mirror image of a variable; variables that are unchanged under this transformation are said to 

have even parity, and those that flip sign are said to have odd parity.  The electron states come 

from s-orbitals (even), while the hole states are from spin-orbit coupled p-orbitals (odd) with 

{] + Œ{Á rotational symmetry about the growth axis of the wells.  Since the states have opposite 

parity, the states can only be coupled through an operator that is odd under space inversion.  This 

implies, to second order, the off-diagonal coupling terms must be linear in k.  It was shown by 

Altarelli and Laikhtman et al.  that these conditions require the off-diagonal terms to be of the 

form '(s) = ı(s] + Œs]), where w is a constant that characterizes the coupling between the 

two layers.195,204  The final two-band Hamiltonian is then 

¯ = ~

ℏ#z#

!=Ï
ı(s] + Œs])

ı(s] − Œs]) iV£ −
ℏ#z#

!=}

�,  (6.2) 
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with energies206 

iR,!(s) =
lÏWl}
!

±πglÏVl}
!

h
!
+ ı!s! (6.3) 

and eigenstates 

EJR,!Ä = cosÅEJ~,qÄ+ Œ sinÅEJq,~Ä,  (6.4) 

where sin 2Å = Çz

](lÏVl})#WÇ#z#
. 

 In the limit that the difference in the electron and hole energies is much larger than the 

strength of the coupling (i~ − iq ≫ ıs), the eigenstates represent two uncoupled quantum 

wells.  In other words, for in-plane momentum values far from the crossing point (kcross), 

tunneling does not affect the electron or hole bands.  In this case, the longitudinal conductivity 

can be described by the classical Drude model, 1]] = ?M}~ + {M}q, where n(p) is the free 

electron(hole) density, and µe(µh) is the electron(hole) mobility.  When the energies of carriers in 

both wells are matched (Ee =Eh), however, the two bands anticross at the in-plane momentum 

value s±œæ≤≤ = π
lqÆ=∗

!ℏ#
, where |∗ = =Ï=}

=ÏW=}
 is the reduced mass, and Eg0, the overlap between the 

bands, is positive.  In the absence of any disorder, the band structure is then gapped out due to 

hybridization, and the bulk mini-gap conductivity will vanish in the low temperature limit. 

 The energy dispersion from Equation 6.3 can be used to find the density of states of the 

system, ?!; =
z

\
gyl
yz
h
VR

 (Figure 6.3a).  Within the hybridization gap, the density of states 

vanishes, so the expected bulk conductivity of the system in the zero-temperature limit would be 

fully suppressed to zero.  At the edges of the mini-gap, though, due to the non-monotonic 

dispersion of the system (Figure 6.2, Figure 6.3b), the hybridized energy bands have local 

extrema at finite wavevector values.  This leads to van Hove singularities, points at which 
yAC
yl
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diverges, at the mini-gap edges.  It is worth noting that this model was derived for an idealized 

case without disorder.  Disorder effects can lead to a reconstruction of the density of states 

singularities and to a finite population of states within the gap.   

 

Figure 6.3: [Adapted from Ref. 201] Density of states (a) and in-plane dispersion relations (b) of 

electrons in InAs and holes in GaSb with (solid lines) and without (dashed lines) consideration 

of the hybridization effect.  Density of states vanishes within the hybridization gap and exhibits 

van Hove singularities at the gap edges.   

 

6.1.2  Tuning the Band Structure in InAs/GaSb Composite Quantum Wells 

 As mentioned above, one of the appealing features of InAs/GaSb CQWs is the tunability 

of the band structure by perpendicular electric fields.189,207  Electric fields are typically generated 

by applying gate voltages to the top and/or bottom of the sample.  The band bending due to the 

applied electric field follows Ê = R

~
∇i, where E is the band energy.  Consider applying an 

electric field F in the +z direction in the system of Figure 6.2.  The E1 band will shift 
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GaSb and the InAs QW’s are far separated. However,
when these two wells are adjacent to each other, the
degeneracy around the crossover is lifted due to the
k ? p interaction between electrons in the InAs and
holes in the GaSb [3,5]. When the hybridization effect
is considered, this conventionally recognized semimetal
becomes a semiconductor with aW-shaped (or M-shaped)
conduction (or valence) band dispersion, shown as solid
curves in Fig. 3(b). The hybridization gap depends upon
the coupling coefficient, which is determined by the
degree of wave function overlap of the electrons in the
InAs QW and the holes in the GaSb QW. Here we have
chosen a coupling coefficient of 5 meV [3–5]. As a result
of hybridization, the DOS is also changed. We find zero
DOS within the hybridization gap as expected, and two
van Hove singularities at the band edges [see solid curve
in Fig. 3(a)]. However, due to the sample imperfections,
the sharp feature of the DOS is smeared out significantly
by the inhomogeneous broadening [14]. In other words,
the resulting DOS after considering the hybridization and
inhomogeneous broadening effects is closer to the dashed
line in Fig. 3(a), but with localized states within the
hybridized gap. As a result, this modification of DOS
is reflected as a dip in Cm. Third, in the range 210 #
Vg , 25 V, the Cm shows no features, implying that Ef
is still above E0 at Vg ≠ 210 V. This is consistent with
the Hall measurements and the fact that the DOS of a
hole subband is more than ten times larger than that of an
electron subband.
We have shown, so far, not only that both quantum

Hall and C-V measurements confirm the coexistence of
2D electrons and 2D holes for the hybridized sample
when 210 # Vg , 21 V, but also that there is a signa-
ture of hybridization gap on Cm at Vg , 24 V. In addi-
tion to the C-V curve, the transfer characteristics are more
strongly influenced by the band hybridization. Figure 4(a)
shows the typical I-V curve for the narrow gap semi-
conducting sample. For Vg . 26 V, the drain current
sIDSd is carried by 2D electrons in the InAs well, and the

sample behaves as a conventional n-type field-effect tran-
sistor (FET). The IDS turns on sharply from 26 V to
25 V, and increases monotonically as Vg is increased.
Eventually, it reaches a saturation value of ,70 mA. By
the same token, the sample is like a p-type FET in the
voltage range Vg , 26 V. However, the saturation value
for p channel is expected to be smaller due to two factors.
One is because the hole mobility in the GaSb QW is 1 or-
der of magnitude smaller than the electron mobility in the
InAs QW. The other is because of a resistive tunneling
process between the ohmic contacts and the hole channel
[10]. That is, the channel conduction for Vg , 26 V is
carried by electrons tunneling from the source region of
the InAs QW to the GaSb QW and then tunneling back
to the drain region of the InAs QW. When we superim-
pose transfer characteristics of n and p FET, we expect an
asymmetric V-shaped I-V curve as observed for the semi-
conducting sample, where the hole channel is not turned
on until the electron channel is turned off. The minimum
of the V shape is a consequence of the Fermi level resid-
ing in the band gap, and it marks the onset of the switch-
ing between electron and hole conduction. On the other
hand, in the case of a true semimetal system, the hole
channel is turned on before the electron channel is turned
off. The resulting transfer characteristic is then expected
to be steplike, instead of V shaped, because there is no
forbidden energy gap. However, this is not observed for
the hybridized sample. In the voltage range 210 # Vg ,
0 V, we still observed a V-shaped curve, a characteris-
tic of a semiconducting sample. This result further con-
firms the existence of an energy gap when Ef lies between
HH0 and E0.
Although both the semiconducting and the hybridized

CQW exhibit an energy gap, they show distinct transport
properties under a parallel magnetic field sBkd, due to
differences in the original mechanisms of the energy gap
formation. In the presence of Bk applied along the y
axis, electrons in the InAs well with in-plane momentum
skx , kyd will couple to holes in the GaSb well with

FIG. 3. (a) The density of states and (b) the in-plane dispersion relations of electrons in InAs and holes in GaSb without (dashed
curve) and with (solid curve) consideration of the hybridization effect. (c), (d) The in-plane dispersions including the hybridization
effect under a parallel magnetic field. Here the HH0 is assumed to be 50 meV above the E0.

4615
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downward, while the H1 band will shift upward, increasing the separation between the subbands 

Eg0 and pushing the anticrossing point kcross to higher values of k.  Applying an electric field in 

the -z direction will have the opposite effect.   

 For small electric fields, the addition of the field can be treated as a perturbation, with the 

first order energy correction ⟨J|'(ˆ)|J⟩, where '(ˆ) = M3ˆ for electrons and '(ˆ) = −M3ˆ for 

holes.  Thus the electron and hole subbands will shift in opposite directions by ∆i = ±M3〈ˆ~,q〉, 

respectively.  Figure 6.4 shows the dispersion of E1 and H1 for different perpendicular electric 

fields in a theoretical 17 nm InAs/ 4.85 nm GaSb double-gated CQW proposed by Naveh and 

Laikhtman.189  This demonstrates that, in principle, it is possible to switch between the normal 

and inverted band regime.  Furthermore, the calculated fields required to achieve switching are 

readily experimentally accessible.189  For example, the switching in Figure 6.4 occurs for fields 

on the order of 100 kV/cm, or 1 V/kÅ.  This means for a reasonable dielectric thickness on the 

order of 1 kÅ, switching can be achieved for applied gate biases on the order of 1 V. 
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Figure 6.4: [Adapted from Ref. 189] In-plane band structure of a double-gated InAs/GaSb 

composite quantum well under different external electric fields.  The system can be tuned 

between the normal and inverted regime by applying different gate voltages.   

 

 In addition to tuning the band structure, applied electric fields can also be used to alter 

the Fermi level by changing the carrier density in the wells.  Using the model of charging a 

capacitor, the carrier density will change as ∆? = ≥

~;
∆', where e is the dielectric constant, d is 

The dashed line in Fig. 2 depicts the spectrum obtained
for a completely impenetratable GaSb-InAs interface ~i.e.,
zero coupling constant at the interface!. Two branches of the
spectrum, electron branch and hole branch, are immediately
observed. Due to the positive value of Ev12Ec1 , the
branches overlap, and crossing occurs at an in-plane wave
number kcr .

The real, nonzero, coupling constant permits penetration
of wave functions through the interface. Effective mass
theory shows3 that this penetration is small. It then follows
that when the two functions are close in energy, they will
hybridize, and one could no longer distinguish between an
electron-like function and an hole-like one. This hybridiza-
tion lifts, in the usual manner, the degeneracy at kcr , and an
anticrossing of the branches occurs. The resultant spectrum
is shown with solid lines in Fig. 2.

An energy gap of the order of 5 meV has evolved, and
two new W-shaped bands are formed. If neutrality is kept in
the structure ~i.e., no doping, and no external pinning of the
Fermi level!, then the Fermi level is fixed in the gap, and a
semiconducting behavior is expected. Electrons excited to
the new conduction band would now feel a relatively
flat dispersion. Only at densities larger than
ncr5kcr

2 /2p;331011 cm22 they would resume their light
mass.

Applying perpendicular electric field across the sample
would effectively shift the valence band edge in the GaSb,
and the conduction band edge in the InAs, in opposite direc-
tion to one another. In other words, the k50 overlap
Ev12Ec1 would increase or decrease with applied field, de-
pending on the field’s polarity.

Self-consistent effective bond-orbital results for the band
structure under various applied fields are shown in Fig. 3.
For large negative fields Ev12Ec1,0, the two branches do
not overlap, and the regular electron and hole dispersion are
obtained. The energy gap in this case is solely determined by
the magnitude of the field. When the field is increased ~to-
ward zero, and positive values!, the regime of positive over-
lap is reached, and the band structure is determined by the
previous considerations. The energy gap is now a conse-
quence of the penetration and hybridization of the wavefunc-
tions, and only weakly depends on the external field ~Fig.
4a!.

As already mentioned, if overall neutrality is kept, then
the Fermi level is located in the energy gap. However, for a
given electric field ~i.e., for a given band structure!, the po-
sition of the Fermi level can be independently controlled. By
applying front-gate and back-gate voltages, one can change
the sample’s potential relative to the in-plane leads, thus
charging the sample, while keeping the electric field fixed.
Doping of the sample would also determine the Fermi level
position, but only in a double-gated configuration both the
band structure and the Fermi level can be controlled inde-
pendently.

It is apparent ~see Fig. 3! that kcr increases with increas-

FIG. 2. In-plane spectrum of carriers in the studied heterostructure. Dashed
lines: with no coupling between valence and conduction band states. Solid
lines: with realistic coupling. The formation of gaps is discussed in the text.
The reduction of the overlap @Ev1(0)2Ec1(0)# is due to incomplete con-
finement when coupling is allowed.

FIG. 3. The in-plane band structure of the heterostructure under various
external electric fields E .

FIG. 4. The dependence of the energy gaps ~a! and band-edge effective
masses ~b! on applied electric field. m0 is the free electron mass.

1981Appl. Phys. Lett., Vol. 66, No. 15, 10 April 1995 Y. Naveh and B. Laikhtman
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the dielectric layer thickness, and DV is the applied bias.  The Fermi level is usually pinned 

above the H1 band, but with gating, it can be shifted to sit between the H1 and E1 subbands to 

create a regime of strongly coupled electron-hole systems.  When EF is between H1 and E1, 

electrons and holes coexist in their respective layers, resulting in two-carrier transport.196  When 

EF is above H1 or below E1, single-carrier transport occurs, electron-like or hole-like, 

respectively.208    

 To tune both the band structure and the Fermi level, a double-gated system is necessary.  

The absolute value of the gate biases relative to the potential of source/drain contacts sets the 

position of the Fermi level relative to that of the contacts, while the relative difference between 

the biases sets the positions of the subbands.  Double-gated CQWs of InAs/GaSb were first 

demonstrated experimentally by Cooper et al. who observed peaks in the longitudinal resistance 

as a function of gate voltage when the derived carrier densities were nearly equal, ? = { = z$–Épp#

!\
, 

corresponding to the resonant condition of equal energy and in-plane momentum in the two 

wells, and therefore indicating the presence of a hybridization gap.199   Using the temperature 

dependence of the resistance peak, the group deduced the hybridization gap in their structures 

was approximately 2 meV.  Alternatively, the size of the gap can be determined from the relative 

dependence of the resonant resistance peak with front gate for a constant back gate voltage 

(Figure 6.6 for example).141  The resistance maximum corresponds to the middle of the gap, 

while the resistance dip corresponds to the van Hove singularity at the gap edge.  The gap size 

can then be found by 

∆= 2û'‚~az − ';N‚ü
∆A

∆∑

R

ÑÖ√
, (6.5) 

where 
∆A

∆∑
 is the rate of carrier change with Vfront, and ∞Ü∂ =

(=ÏW=})

\ℏ#
 is the density states. 
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6.2  Theoretical Prediction of the Quantum Spin Hall Effect in Inverted Type-II 

Semiconductors 

 Liu et al. were the first to model the quantum Spin Hall effect in Type-II semiconductor 

quantum wells, such as InAs/GaSb.140  With the inverted band structure and consequent 

hybridization gap, one should expect the inverted regime in InAs/GaSb QWs to be a 

topologically nontrivial QSHI phase protected by the bulk gap.  This assumption is complicated 

by the fact that the electron and hole subbands lie in two separate layers.  Liu et al. derive several 

consequences of this.  First, the coupling strength between E1 and H1 is reduced relative to the 

HgTe case, but this can be incorporated as a quantitative correction.  Additionally, since there is 

no inversion symmetry in the QW growth direction, structural inversion asymmetry (SIA) may 

be large enough to compete with the hybridization.  Both SIA and bulk inversion asymmetry 

(BIA) must be included for InAs/GaSb system calculations, whereas for HgTe QWs, these terms 

may be neglected because BIA corrections are small relative to the gap, and the QW is 

symmetric, minimizing SIA.  Lastly, the spatial separation of the electron and hole layers results 

in an automatic charge transfer between the layers, yielding a coexistence of p-type and n-type 

carriers.  This requires a self-consistent treatment of Coulomb energy.   

 These systems are well described by the 8-band Kane model,209 and Liu et al. use a 4-

band model effectively equivalent to the Bernevig-Hughes-Zhang (BHZ) approach discussed in 

Section 3.5, though with the addition of terms for the SIA and BIA.  The Hamiltonian is then 

¯ = ¯£ + ¯tø8 + √̄ø8. (6.6) 

In the basis {|i1 +⟩, |¯1 +⟩, |i1 −⟩, |¯1 −⟩}, up to quadratic terms in k, 
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¯£ = h(s)Â%×% +

⎝

⎛

ℳ(s) usW 0 0
usV −ℳ(s) 0 0
0 0 ℳ(s) −usV
0 0 −usW −ℳ(s)⎠

⎞,  (6.7) 

where I4´4 is the 4´4 identity matrix, and h(s) describes band bending.  The elements, ℳ(s), 

are defined as 

ℳ(s) = †£ +†!s!,  (6.8) 

where †£ = −
lqÆ
!

 corresponds to the gap between bands and is negative in the inverted regime, 

and M2 relates to the curvature of the bands and corresponds to the inverse of the effective mass.  

The A factor incorporates interband coupling to the lowest order, and s± = s] ± ŒsÁ.   

 Without the HBIA and HSIA terms, the Hamiltonian is essentially an extension of the two-

band model of Equation 6.2 to include spin.  H0 is block diagonal, and each block is exactly a 

massive Dirac Hamiltonian in (2 +1) dimensions.  The rest mass lies on the diagonal, with 

opposite mass for electrons and holes, and the off-diagonal elements are linear in momentum and 

couple electrons and holes of the same spin.  This then matches the BHZ model, and we should 

therefore expect a topological phase transition at the gap-closing condition M0 = 0.  While the 

addition of HBIA and HSIA complicates the picture, we know that the QSH state is a topological 

phase protected by the band gap.  Therefore, if we begin with the Hamiltonian H0 in the QSH 

phase and adiabatically turn on HBIA and HSIA, then the system will remain in the QSH phase as 

long as the energy gap between E1 and H1 does not close.   

In contrast to HgTe QWs where the carriers are in the same layer and the gap lies at the 

zone center, in InAs/GaSb CQWs, the energy gap opens at some finite kcross in momentum space 

where the ground electron subband in the InAs well and the ground hole subband in the GaSb 

well are matched in energy and in-plane momentum.  This hybridization gap is the bulk gap of 
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the quantum spin Hall insulator.  The charge carrier density at the charge neutral point (CNP) in 

the inverted regime is defined as ?±œæ≤≤ =
z$–Épp#

!\
, and can be used to characterize the degree of 

band inversion, which in turn indicates the nature of the bulk states.  For ?±œæ≤≤ ≳ 2 × 10RR	cm-2, 

the system is considered to be deeply inverted, and there will be considerable residual states 

within the hybridization gap.  The result is that the bulk of the QW is not truly insulating, 

yielding the system an ineffective QSHI.141,208,210,211  When ?±œæ≤≤ ≲ 1 × 10RR cm-2, however, 

the system is in the shallowly inverted regime, and the bulk is highly insulating, allowing for a 

true QSHI state.144,212 

 To confirm the quantum spin Hall state in the InAs/GaSb CQWs, Liu et al. studied the 

edge state spectrum.  Using a tight-binding model with cylindrical geometry, they confirmed 

there was one Kramers pair of edge states with opposite spin per edge in the QSHI phase and no 

edge states in the normal insulator phase.  The group then numerically solved the full 8-band 

Kane model, taking into account the built-in electric field between the two QW layers, and 

deduced gap behavior as a function of QW thickness and applied front and back gate voltages.  

They found that as a function of front and back gate voltages, there were six parameter regions, 

as seen in Figure 6.5.  In regions IV, V, and VI (blue), the system is in the normal regime.  In 

regions I, II, and III (red), the system has an inverted band structure, but is only in the QSH state 

in region II, when the Fermi level sits within the bulk gap.  Region I(III) has roughly the same 

spectrum as region II, but with finite p(n)-doping.  Therefore, it is possible to continuously tune 

the system into and out of the QSHI phase using applied gate voltages.  Compared to other 

proposals of gate-induced phase transitions in asymmetric HgTe/CdTe QWs, InAs/GaSb CQWs 

are much more sensitive to the gate voltage due to the fact that the electron and hole 
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wavefunctions are centered in separate layers, making the effect of the gate voltage highly 

asymmetric.   

 

Figure 6.5: [Adapted from Ref. 140] Phase diagram for InAs/GaSb CQW as a function of front 

(Vf) and back (Vb) gates.  Regions I, II, and III are in the inverted regime.  The purple striped 

area in region II is the quantum spin Hall phase with the Fermi-level in the hybridized gap.  

Region I(III) is the p(n)-doped inverted system.  Regions IV, V, and VI are in the normal regime.  

The purple striped area in region V is the normal insulator phase with the Fermi level in the bulk 

gap, and region IV(VI) is the p(n)-doped normal semiconductor.  The black dotted line indicates 

the phase boundary between the inverted and normal band structure, and the green circle 

denotes the quantum critical point between the NI and QSH phases.    

 

 

finite p!n"-doping. Similarly region V is the NI phase and
IV, VI are the corresponding p-doped and n-doped normal
semiconductors. Thus, by tuning Vf and Vb to the correct
range, one can easily control the phase transition between
QSH(II) and NI(V). We highlight the direct quantum criti-
cal point between the QSH(II) and NI(V) phases in Fig. 4.

Compared to a similar proposal of a gate-induced phase
transition in asymmetric HgTe=CdTe QW [22], InAs=
GaSb=AlSb QW are much more sensitive to the gate
voltage, which makes it much easier to realize such a
transition experimentally. This is due to the fact that the
electron and hole wavefunctions are centered in separate
layers, so that the effect of the gate voltage on them is
highly asymmetric. This simple mechanism allows us to
investigate the quantum phase transition from the NI to the
QSH state in situ, through the continuous variation of the
gate voltage, rather than the discrete variation of the quan-
tum well thickness. It is also useful for developing a QSH
FET. The FET is in an ‘‘OFF’’ state when the Fermi level
lies inside the normal insulating gap. Then, by adjusting
the gate voltages the FET can be flipped to the ‘‘ON’’ state
by passing through the transition to the QSH phase, where
the current is carried only by the dissipationless edge
states. This simple device can be operated with reasonable
voltages as seen in Fig. 4 but would be more promising if
one could enlarge the bulk insulating gap to support room
temperature operation.

In conclusion, we propose that the QSH state can be
realized in InAs=GaSb QW. We presented both simple
arguments based on an effective model and realistic self-
consistent calculations. We showed that this system has the
distinct advantage over HgTe QW, in that the quantum
phase transition can be continuously tuned by the gate

voltage. This principle could be used to construct a QSH
FET device with minimal dissipation.
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FIG. 4 (color online). Phase diagram for different front (Vf)
and back (Vb) gate voltages. Regions I, II, III are in the inverted
regime. The striped region II is the QSH phase with Fermi-level
in the bulk gap, and I (III) is the p!n"-doped inverted system.
Regions IV, V, VI are in the normal regime. The striped region V
is the NI phase with Fermi level in the bulk gap, and IV (VI) is
the p!n"-doped normal semiconductor. The black dotted line is
the pase boundary between inverted and non-inverted band struc-
tures and the green circle shows the quantum critical point be-
tween the NI and QSH phases. The well configuration has d1 #
d2 # 10 nm, and AlSb barrier thickness is 30 nm on each side.
Vf and Vb are defined with respect to the Fermi levels of the QW.
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6.3  Experimental Evidence of the Quantum Spin Hall State in InAs/GaSb 

 Prior to the formulation of the QSH phase in InAs/GaSb CQWs, the first experimental 

evidence of the mini-gap due to electron-hole hybridization was demonstrated by Yang et al. via 

capacitance and transport measurements.196  Further evidence of the hybridization gap was seen 

in far-infrared measurements by Kono et al.200 and later by Yang et al.201  Additionally, Cooper 

et al.199 observed strong peaks in the longitudinal resistance of double-gated structures 

corresponding to the hybridization gap.  In both the capacitance studies by Yang and the 

transport measurements by Cooper, the groups observed signs of localized states within the 

hybridization gap.  Naveh and Laikhtman considered the finite gap conductivity a bulk effect 

related to a small amount of dissipative tunneling between the wells.202  Previously, Caldeira and 

Leggett,213 in studying the influence of dissipation on quantum mechanical tunneling in 

macroscopic systems, found that if a particle is coupled to external degrees of freedom, its 

tunneling probability will be reduced.  Therefore, dissipative tunneling yields some number of 

non-hybridized electronic states, resulting in a nonzero density of states in the gap and finite gap 

conductivity.  Even a slight amount of broadening of the electron and hole bands can lead to 

significant changes in transport behavior, yielding finite bulk conductivity even in the zero 

temperature limit and in the limit of level broadening much smaller than the gap size.202   

 In 2010, Knez et al. experimentally studied the origin of the residual conductivity at low 

temperatures in dual-gated InAs/GaSb CQWs.208  Their findings were consistent with the model 

of Naveh and Laikhtman; namely that the residual conductivity could be explained by 

contributions from both free and hybridized carriers in the presence of impurities.  As a function 

of front gate bias, they observed clear peaks in the longitudinal resistance (Figure 6.6) at the 

point where the electron and hole densities are matched, indicating the existence of a 
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hybridization gap.  The temperature dependence of the resonance peak was consistent with a 

mini-gap value of 3-4 meV.  Even at T = 20 mK, however, the largest measured resistance was 

only 5 kW, less than half of the 
q

!~#
 seen in HgTe QWs.121  The group therefore attributes the 

resonance peaks to a bulk effect, with residual conductivities on the order of  
R£~#

q
, a few times 

larger than the expected contribution from the edge.  Naveh and Laikhtman predicted the 

residual gap conductivity should go as 1(E = 0)~	~
#

q

lqÆ
∆

, for the condition Γ ≪ ∆≪ iV£, where 

G is the level broadening,  D is the hybridization gap, and iV£ = ? \ℏ#

=∗  is the relative separation 

of the two bands.202  Using this equation, Knez et al.  derives a residual conductivity of ~	é~
#

q
, 

consistent with their measurements.  They also found hybridized states will contribute to residual 

gap conductivity on the order of 	~
#

q

lqÆ
∆

 due to level-broadening-induced charge of hybridized 

states.   
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Figure 6.6: [Adapted from Ref. 208] Peaks observed in the longitudinal resistance Rxx as a 

function of Vfront in InAs/GaSb CQW with Vback between -10 V and 10 V at B = 0 T and T = 0.3 K.  

Inset (a) dispersion of the hybridized bands.  At the anticrossing point, where the electron and 

hole densities are approximately equal, a hybridization gap is opened.  Inset (b) The resonance 

peak heights as a function of the inverse carrier density.  For ? ≲ 5 × 10RRcm-2, the peaks vary 

linearly with n-1. 

 

 A second study by Knez et al. in 2011141 demonstrated evidence for the quantum spin 

Hall state in InAs/GaSb CQWs in direct agreement with the predictions of Liu et al.140  They 

found that due to the gap opening away from the zone center, edge and bulk states are decoupled, 

leading to a large disparity in their Fermi wavevectors and the ability for edge transport to persist 

even in the limit of a conductive bulk.  The group used a four-terminal device structure, so that 

metallic band dispersion !Fig. 2"a#$.6 In order to observe the
QSHE,4 the Hall bar length L should satisfy L!"#, where
"# is the inelastic scattering length and its value is on the
order of a few micron in our samples. In large samples
"L$"##, edge mode resistance can be estimated13 as
"L /"##"h /2e2#.

Our InAs/GaSb CQW was grown by molecular-beam ep-
itaxy on silicon-doped N+"100# GaAs substrate. The struc-
ture consists of a standard buffer consisting of AlSb and
Al0.8Ga0.2Sb layers.14 On top of this a 500 Å AlSb lower
barrier was grown, followed by 150 Å InAs and 80 Å GaSb
quantum wells with a 500 Å AlSb top barrier and a 30 Å
GaSb cap layer. Our experiments were performed on two
Hall bar samples from the same wafer, processed using stan-
dard photo and e-beam lithography with wet etching. The
sample A "B# has width and length of 0.7% 1.5 &m2 "10
% 20 &m2#. The top gate was fabricated by depositing
2500 Å Si3N4 using plasma-enhanced chemical vapor depo-
sition system, and evaporating 1000 Å Al or Ti/Au metal
gate. N+GaAs substrate serves as a back gate for our devices
and was contacted using silver resin. Ohmic contacts to the
electron-hole layers were made with indium and without an-
nealing. Low-temperature magnetotransport measurements
were carried out in a 3He refrigerator "300 mK# combined
with a 12 T superconducting magnet, or in a 3He / 4He dilu-
tion refrigerator "20 mK# with a 18 T magnet "National High
Magnetic Field Laboratory, NHMFL#. Standard lock-in tech-
nique with an excitation current of 100 nA at 23 Hz was
employed.

In dual gate geometry !Fig. 1"a#$, both the relative sepa-
ration between the subbands, Eg0, and the Fermi energy EF
can be tuned. When EF is between H1 and E1, electrons and
holes coexist in their respective layers, resulting in two-
carrier transport7 with characteristic nonlinear dependence of
Hall resistance, Rxy, on magnetic field, B. Single carrier
transport occurs for EF above H1 or below E1, and is elec-
tronlike or holelike, respectively. In our CQW, EF is pinned

by the surface states in the cap layer15 and under zero applied
bias only electrons are present in the well with a typical
low-temperature density of 7% 1011 cm−2 and mobility of
90,000 cm2 /V s. Shubnikov de Haas "SdH# oscillations can
be observed starting at 1.8 T with no evidence of parallel
conduction. Rxy varies linearly with B until the appearance of
the integer quantum Hall plateaus. A representative trace for
electronlike transport in a larger size Hall bar is shown in
Fig. 1"b#. In contrast, micron-size devices show strong fluc-
tuations in Rxx !Fig. 1"c#$. Fluctuations are reproducible in
magnetic field, and conductivity varies on the order of e2 /h
!Fig. 1"d#$, indicating a mesoscopic regime.

In the single-carrier regime, electron density changes lin-
early with front and back bias as approximately 1.5
% 1011 cm−2 /V and 0.4% 1011 cm−2 /V. Electron densities
are extracted by sweeping gate biases at fixed B or through
analysis of SdH oscillations. When holes are induced in the
GaSb well, the effect of front gate on the electron density in
the InAs layer is near-perfectly screened. When induced,
holes will coexist with electrons in the device bias range and
hole density can be extracted by fitting Rxy with two-carrier
transport expression. Values are consistent with those for un-
screened electrons and in agreement with the parallel capaci-
tor model.

In Fig. 2 we sweep the front bias from 10 to −10 V with
the back bias fixed, changing the carriers from solely elec-
trons to predominantly holes, as evidenced from the change
in sign in Rxy at high B. When the carrier densities are
matched "i.e., n% p#, clear peaks in Rxx appear, indicating the
existence of a mini gap. Resonance peaks, Rxx"max#, in-
crease with decreasing back bias, and hence vary inversely
with resonance electron-hole density, n= p and correspond-
ing kcross "Fig. 2#. In particular, for n' 5% 1011 cm−2, reso-
nance peaks vary linearly with n−1 !Fig. 2"b#$. This inverse
relationship, which we subsequently discuss, cannot be ex-
plained with an increasing mini gap, for coupling between
wells varies proportionally16 with k.

Our central finding is the existence of finite conductivity
in InAs/GaAs in the mini-gap regime. Even at the lowest
temperature T=20 mK !Fig. 3"a#$, largest observed reso-
nance peaks Rxx"max#%5 k( for mesoscopic samples,
which is at least 2–3 times smaller than h /2e2. This is in
contrast to the case of HgTe QWs where quantized value is
approached from larger resistance values.4 Hence, observed
resonance peaks can be understood as a bulk effect with a
residual conductivity on the order of 10e2 /h , which is a few
times larger than the predicted contribution from the edge.
This is corroborated by the fact that sample B "10
% 20 &m2# also shows a resistance peak value of %4.5 k(
"shown in Fig. 2, dotted line#. We should note that in Ref. 8
a peak resistance value of %15 k( is reported, which ap-
pears close to h /2e2. However, this value presumably reflects
only the bulk transport in the macroscopic samples used in
Ref. 8, where L$"#, and is consistent with our measure-
ments if geometric factor is taken into account.

For the remainder of this paper we concentrate on the
origin of residual gap conductivity. We first note that the
anisotropy of the heavy hole band may play a role in the gap
anisotropy at the Fermi energy, which could lead to residual
conductivity. Anisotropy is more apparent for larger kcross
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the expected edge conduction is 
%~#

q
, with device lengths between 2 and 100 µm.  In longer 

devices, the four-terminal conductance, including dephasing effects,8,73 is predicted to be 

+R%,!@ =
!~#

q
è
ªê
/
+ g

ªê
/
h
!
ë, (6.9) 

where lf is the phase coherence length and L is the device length.  Figure 6.7a shows the 

resistance peaks at L = 100, 10, 4, and 2 µm at 300 mK.  The resistance peak of the 100 µm 

device is used to estimate the bulk gap resistance, Rbulk ~ 10.2 kW, and using a parallel 

combination of Rbulk with the expected edge resistance, 
q

%~#
, gives a resistance *íìªz ∥

q

%~#
~ 3.95 

kW, which is very close to the peak resistance of 3.75 kW for L = 2 µm.  Additionally, fitting 

+ gR
/
h to Equation 6.9 yields lf ~ 2 µm, providing further evidence for the presence of helical 

edge states in the shortest samples.   

 As a function of sample width W (Figure 6.7b) for L = 2 µm, resistance peaks tend to 

increase as W is decreased.  Figure 6.7c of G(W) shows a relatively linear relationship, with the 

intercept +~;V~ = (4.08± 0.69) ~
#

q
, supporting the existence of helical edge transport.  The slope 

of the same fit yields bulk conductivity ñíìªz = (5.46 ± 1.01) ~
#

q
, which is consistent with the 

expected bulk conductivity202 ñíìªz~
~#

q

lqÆ
∆
~ %~#

q
, where Eg0 is found from the front gate 

dependence of 
t

§‰Î
.  The minimum in  

t

§‰Î
û'éœæAΩü corresponds to the anticrossing carrier density, 

and iV£ = ?±œæ≤≤
\ℏ#

=∗ .  Therefore, both the length and width dependence point to the existence of 

helical edge states. 



 159 

 

Figure 6.7: [Adapted from Ref. 141] a) Longitudinal resistance Rxx vs. front gate voltage Vfront  

for various device lengths L = 100, 10, 4, and 2 µm.  Width is varied to give a constant ratio 

/

.
= 2.  Resistance peaks decrease as device length shortens and approach the limit *íìªz ∥

q

%~#
 

(dashed line) for the 2µm device.  b) Rxx vs. Vfront for device widths W = 0.5, 1, 1.5, and 2 µm 

with L =2  µm.  Resistance peaks decrease with increasing W.  c) The gap conductance G shows 

a linear relationship with the device width.  The intercept of the linear fit  gives +~;V~ =

(4.08± 0.69) ~
#

q
, consistent with helical edge transport, and the slope of the fit gives the bulk 

conductivity ñíìªz = (5.46 ± 1.01) ~
#

q
. 

 

conductance consistently confirm the existence of helical
edge channels in inverted InAs=GaSb QWs.

Using Vback the anticrossing point kcross can be tuned to
lower values, thereby suppressing gbulk. Figure 3 shows Rxx

vs Vfront with Vback varied in 2 V steps from 0 to !8 V for
devices of L¼100!m in (a), L¼2!m in (b), andh ¼ 2
in both cases. As Vback is tuned to more negative values, the
separation between the bands Eg0 is reduced, and the
resistance peaks of the L ¼ 100 !m sample increase
from Rmax # 10 k! at Vback¼ 0 V, to Rmax # 50 k! at
Vback¼ !8 V. On the other hand, the resistance peaks of
the mesoscopic sample increase only slightly, from Rmax #
4 k! at Vback¼ 0 V, to Rmax # 6 k! at Vback¼ !8 V. In
fact, the conductance difference between mesoscopic and
macroscopic samples,"G¼G2!m!G100!m, stays around
#4e2=h for all values of Vback, as shown in Fig. 3(c),
accounting for the helical edge transport.

Data presented in Fig. 3(a) may suggest that edge con-
duction is completely independent of gap bulk conductiv-
ity, gbulk. However, this is valid only in the regime of low
gbulk. Note that in Fig. 3(a) gbulk& 5e2=h. Using the bias
cooling technique [14], the system can be pushed deeper
into the inverted regime, i.e., a larger Eg0 can be obtained,
so that atVback¼0V, gbulk#19e2=h, while atVback¼!8V,

gbulk# e2=h. In this case, the edge conductance, i.e.,
"G ¼ G2 !m !G100 !m, goes from "G# 0 for the large
bulk conductivity of gbulk# 19e2=h to about "G# 3e2=h
as the bulk conductivity is reduced to gbulk& 5e2=h, as
shown in Fig. 3(d). The cutoff bulk conductivity at
which edge conduction ‘‘activates’’ can be estimated to
gbulk# 10e2=h.
The apparent resilience of edge conduction to bulk

transport is quite unexpected, considering that a conductive
bulk would allow edge electrons to tunnel from one side to
another, resulting in interedge scattering and a reduced
edge conductance [19,20]. However, the interedge tunnel-
ing probability may be significantly reduced by a large
Fermi wave vector mismatch. The bulk gap states are
inherited from the nonhybridized band structure and have
a Fermi wave vector equal to kcross $ 0while edge modes,
for EF situated in the middle of the gap, have kedge # 0.
Thus, due to kedge % kcross, edge modes are totally re-
flected from bulk states. In fact, the tunneling probability
for the edge electrons will be proportional to the edge-bulk
transmission probability, which scales as kedge=kcross, as
well as the bulk transmission, which scales as bulk con-
ductivity, i.e., as Ego / k2cross. Hence, the overall interedge
tunneling probability will decrease as kcross is reduced,
which is in a qualitative agreement with the data in
Fig. 3(d). Furthermore, due to the low Fermi velocity of
edge states v ¼ 1@ @E

@k # 1@ "
2kcross

# 3&104 m=s, relativistic

effects of the Rashba spin-orbital interaction will be small,
and electron spins are expected to be aligned along the
growth axis, reducing interedge tunneling due to the Pauli
exclusion [21].
The resistance peaks of mesoscopic samples show only a

weak dependence on in-plane and perpendicular magnetic

FIG. 3 (color). Panel (a) shows Rxx vs Vfront for devices with
L ¼ 100 !m, and in (b) for L ¼ 2 !m with Vback varied in 2 V
steps from 0 to!8 V;h ¼ 2, B ¼ 0 T, T ¼ 20 mK. As Vback is
tuned to more negative values, the mini-gap moves to smaller
wave vectors and the resistance peaks increase. The difference in
gap conductance between the 2 and 100 !m sample, "G vs
Vback, is shown in (c), with "G# 4e2=h for all values of Vback.
Note that gbulk& 5e2=h. Panel (d) shows "G vs gbulk for a bias
cooled sample with a larger bulk conduction. Edge conduction
‘‘activates’’ for gbulk& 10e2=h.

FIG. 2 (color). Panel (a) shows Rxx vs Vfront for devices with
L ¼ 100; 10; 4, and 2 !m (AFM image in inset) while W is
varied to give a constant geometric factor h ¼ L=W ¼ 2;
B ¼ 0 T, T ¼ 300 mK. Resistance peaks decrease for shorter
devices and approach the limit Rbulkkh=4e2 (dashed line) for the
2 !m device. Panel (b) shows gap conductance G vs L!1 and
is fitted with Eq. (1) (dashed line) giving coherence length
l" ¼ 2:07'0:25 !m. The conductance difference between
the mesoscopic and macroscopic device is #4e2=h suggestive
of helical edge transport. Panel (c) shows Rxx vs Vfront for devices
with W ¼ 0:5; 1; 1:5, and 2 !m; L ¼ 2 !m. Resistance peaks
decrease with increasing W. The gap conductance G vs W in
panel (d) shows a linear relationship. The intercept of the linear
fit is Gedge ¼ ð4:08'0:69Þ e2h , as expected for the helical edge

transport, while the slope of the fit gives bulk conductivity
gbulk¼ ð5:46'1:01Þ e2h [consistent with data in (a)].
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bulk would allow edge electrons to tunnel from one side to
another, resulting in interedge scattering and a reduced
edge conductance [19,20]. However, the interedge tunnel-
ing probability may be significantly reduced by a large
Fermi wave vector mismatch. The bulk gap states are
inherited from the nonhybridized band structure and have
a Fermi wave vector equal to kcross $ 0while edge modes,
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well as the bulk transmission, which scales as bulk con-
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tunneling probability will decrease as kcross is reduced,
which is in a qualitative agreement with the data in
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FIG. 2 (color). Panel (a) shows Rxx vs Vfront for devices with
L ¼ 100; 10; 4, and 2 !m (AFM image in inset) while W is
varied to give a constant geometric factor h ¼ L=W ¼ 2;
B ¼ 0 T, T ¼ 300 mK. Resistance peaks decrease for shorter
devices and approach the limit Rbulkkh=4e2 (dashed line) for the
2 !m device. Panel (b) shows gap conductance G vs L!1 and
is fitted with Eq. (1) (dashed line) giving coherence length
l" ¼ 2:07'0:25 !m. The conductance difference between
the mesoscopic and macroscopic device is #4e2=h suggestive
of helical edge transport. Panel (c) shows Rxx vs Vfront for devices
with W ¼ 0:5; 1; 1:5, and 2 !m; L ¼ 2 !m. Resistance peaks
decrease with increasing W. The gap conductance G vs W in
panel (d) shows a linear relationship. The intercept of the linear
fit is Gedge ¼ ð4:08'0:69Þ e2h , as expected for the helical edge

transport, while the slope of the fit gives bulk conductivity
gbulk¼ ð5:46'1:01Þ e2h [consistent with data in (a)].
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 The data of Figure 6.8a (ñíìªz ≲ 5 ~#

q
) may suggest the edge conduction is independent 

of gap bulk conductivity in the regime of low gbulk.  The degree of bulk conduction can be tuned 

using a bias cooling technique208 to push the sample deeper into the inverted regime, increasing 

the value of Eg0.  The edge conduction, estimated as ∆+ = +!è= − +R££è=, ranges from DG ~ 0 

for large ñíìªz~19
~#

q
  to ∆+~3 ~#

q
  when bulk conductivity has dropped to ñíìªz ≲ 5 ~#

q
 (Figure 

6.8d).  The resilience of the edge conduction to bulk transport was unexpected, given that 

naively, one would expect a conductive bulk to enable the tunneling of electrons between edges 

and thus a reduced edge conductivity.214,215  A large mismatch in the Fermi wavevectors of the 

bulk and edge states, however, may greatly reduce the tunneling probability.141  The bulk gap 

states follow from the nonhybridized band structure, with Fermi wavevector síìªz = s±œæ≤≤ ≫ 0.  

The edge modes, for EF in the middle of the gap, have s~;V~~0.  It follows, then, that because 

s~;V~ ≪ s±œæ≤≤, edge modes are completely reflected by the bulk modes.  The tunneling 

probability for edge electrons is proportional to the edge-bulk transmission probability, which 

scales as 
zÏCqÏ
z$–Épp

, in addition to the bulk transmission, which scales as ñíìªz~iV£ ∝ s±œæ≤≤! .  

Therefore, the overall interedge tunneling should decrease as kcross is reduced, which is 

qualitatively consistent with Figure 6.8d.  
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Figure 6.8: [Adapted from Ref. 141] Rxx vs. Vfront for L = 100 µm (a) and 2 µm (b) as Vback is 

varied in steps of 2 V from 0 to -8 V, with B = 0 T, and T = 20 mK.  As Vback is tuned to more 

negative values, the gap shifts to smaller values of kcross, and the resistance peaks increase.  The 

difference in the gap conductance, DG, is shown as a function of Vback with ñíìªz ≲ 5 ~#

q
 (c) and 

bulk conductivity for a bias cooled sample with a larger bulk conduction (d).  Edge conduction 

“activates” for ñíìªz ≲ 10 ~#

q
. 

 

 Another study by Qu et al. explored the full phase diagram put forth by Liu et al. (Figure 

6.9a,b).216  They demonstrated the ability to continuously tune between the trivial and 

topological insulating phases using dual gates in InAs/GaSb CQWs.  The group found two 

conductance consistently confirm the existence of helical
edge channels in inverted InAs=GaSb QWs.

Using Vback the anticrossing point kcross can be tuned to
lower values, thereby suppressing gbulk. Figure 3 shows Rxx

vs Vfront with Vback varied in 2 V steps from 0 to !8 V for
devices of L¼100!m in (a), L¼2!m in (b), andh ¼ 2
in both cases. As Vback is tuned to more negative values, the
separation between the bands Eg0 is reduced, and the
resistance peaks of the L ¼ 100 !m sample increase
from Rmax # 10 k! at Vback¼ 0 V, to Rmax # 50 k! at
Vback¼ !8 V. On the other hand, the resistance peaks of
the mesoscopic sample increase only slightly, from Rmax #
4 k! at Vback¼ 0 V, to Rmax # 6 k! at Vback¼ !8 V. In
fact, the conductance difference between mesoscopic and
macroscopic samples,"G¼G2!m!G100!m, stays around
#4e2=h for all values of Vback, as shown in Fig. 3(c),
accounting for the helical edge transport.

Data presented in Fig. 3(a) may suggest that edge con-
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ity, gbulk. However, this is valid only in the regime of low
gbulk. Note that in Fig. 3(a) gbulk& 5e2=h. Using the bias
cooling technique [14], the system can be pushed deeper
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so that atVback¼0V, gbulk#19e2=h, while atVback¼!8V,

gbulk# e2=h. In this case, the edge conductance, i.e.,
"G ¼ G2 !m !G100 !m, goes from "G# 0 for the large
bulk conductivity of gbulk# 19e2=h to about "G# 3e2=h
as the bulk conductivity is reduced to gbulk& 5e2=h, as
shown in Fig. 3(d). The cutoff bulk conductivity at
which edge conduction ‘‘activates’’ can be estimated to
gbulk# 10e2=h.
The apparent resilience of edge conduction to bulk

transport is quite unexpected, considering that a conductive
bulk would allow edge electrons to tunnel from one side to
another, resulting in interedge scattering and a reduced
edge conductance [19,20]. However, the interedge tunnel-
ing probability may be significantly reduced by a large
Fermi wave vector mismatch. The bulk gap states are
inherited from the nonhybridized band structure and have
a Fermi wave vector equal to kcross $ 0while edge modes,
for EF situated in the middle of the gap, have kedge # 0.
Thus, due to kedge % kcross, edge modes are totally re-
flected from bulk states. In fact, the tunneling probability
for the edge electrons will be proportional to the edge-bulk
transmission probability, which scales as kedge=kcross, as
well as the bulk transmission, which scales as bulk con-
ductivity, i.e., as Ego / k2cross. Hence, the overall interedge
tunneling probability will decrease as kcross is reduced,
which is in a qualitative agreement with the data in
Fig. 3(d). Furthermore, due to the low Fermi velocity of
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# 3&104 m=s, relativistic

effects of the Rashba spin-orbital interaction will be small,
and electron spins are expected to be aligned along the
growth axis, reducing interedge tunneling due to the Pauli
exclusion [21].
The resistance peaks of mesoscopic samples show only a

weak dependence on in-plane and perpendicular magnetic

FIG. 3 (color). Panel (a) shows Rxx vs Vfront for devices with
L ¼ 100 !m, and in (b) for L ¼ 2 !m with Vback varied in 2 V
steps from 0 to!8 V;h ¼ 2, B ¼ 0 T, T ¼ 20 mK. As Vback is
tuned to more negative values, the mini-gap moves to smaller
wave vectors and the resistance peaks increase. The difference in
gap conductance between the 2 and 100 !m sample, "G vs
Vback, is shown in (c), with "G# 4e2=h for all values of Vback.
Note that gbulk& 5e2=h. Panel (d) shows "G vs gbulk for a bias
cooled sample with a larger bulk conduction. Edge conduction
‘‘activates’’ for gbulk& 10e2=h.

FIG. 2 (color). Panel (a) shows Rxx vs Vfront for devices with
L ¼ 100; 10; 4, and 2 !m (AFM image in inset) while W is
varied to give a constant geometric factor h ¼ L=W ¼ 2;
B ¼ 0 T, T ¼ 300 mK. Resistance peaks decrease for shorter
devices and approach the limit Rbulkkh=4e2 (dashed line) for the
2 !m device. Panel (b) shows gap conductance G vs L!1 and
is fitted with Eq. (1) (dashed line) giving coherence length
l" ¼ 2:07'0:25 !m. The conductance difference between
the mesoscopic and macroscopic device is #4e2=h suggestive
of helical edge transport. Panel (c) shows Rxx vs Vfront for devices
with W ¼ 0:5; 1; 1:5, and 2 !m; L ¼ 2 !m. Resistance peaks
decrease with increasing W. The gap conductance G vs W in
panel (d) shows a linear relationship. The intercept of the linear
fit is Gedge ¼ ð4:08'0:69Þ e2h , as expected for the helical edge

transport, while the slope of the fit gives bulk conductivity
gbulk¼ ð5:46'1:01Þ e2h [consistent with data in (a)].
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gapped regions, observed as peaks in the longitudinal resistance (Figure 6.9c).  In one gapped 

region, the derived electron and hole densities both vanish at the resistance peak, which is typical 

for a trivial insulator with a normal band gap (R in Figure 6.9).  In the second gapped region, 

there are finite equal electron and hole densities in the vicinity of the resistance peak, indicative 

of inverted band alignment and the opening of a hybridization gap at the crossing of the two 

bands (L in Figure 6.9).  The nature of the two regions was further evidenced by applying an in-

plane magnetic field to shift the electron and hole bands relative to each other in momentum 

space (Figure 6.9d).  The field, therefore, is expected to reduce the hybridization gap, but not the 

normal gap.  The group observed a decrease in the peak height when the sample was gated into 

the region expected to be the topological insulator phase, as well as a shift in the peak position.  

The measured in-plane field dependence is consistent with a relative shift of the two bands in 

momentum for the inverted regime.  In contrast, when the in-plane field was increased for the 

region expected to be a normal insulator, the resistance remained unchanged up to a field of 9 T, 

despite the same predicted band shifting as the TI region.  This further suggests this region 

characterizes a normal insulator.   
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Figure 6.9: [Adapted from Ref. 216] a) Phase diagram of InAs/GaSb double-gated CQWs as a 

function of the applied electric field Ez and the Fermi level position EF.  Both Ez and EF can be 

tuned by the dual gating.  The vertical white line, along which the electron (red) and hole (blue) 

bands touch, separates the normal and inverted band structure regimes.  b)  Phase diagram as a 

function of back gate voltage VBG and top gate voltage VTG.  The lettered points in (a) are 

indicated in (b).  The red and blue lines mark lines of constant electron and hole densities, 

respectively.  The yellow dashed lines indicate constant band overlap for the inverted regime or 

constant band separation for the normal regime.  The black dashed line denotes charge 

blue curves represent the constant density lines for elec-
trons and holes, respectively. These curves bend when the
Fermi level starts to cross both electron and hole bands
(along the green lines) as the total density of states
increases and screening sets in. The constant electron
and hole density lines bend differently according to the
effective masses of the two types of carriers and the
asymmetric quantum well structures. Note that, the phase
diagram shown in Fig. 1(c) follows the calculations by Liu
et al. [5] qualitatively.
Our heterostructure was grown by molecular-beam

epitaxy [24,25]. A 100 nm buffer layer was first grown
on a doped GaSb substrate, followed by a 50 nm AlSb

bottom barrier. The DQWs consist of 5 nm GaSb and
12.5 nm InAs, followed by a 50 nm AlSb top barrier and a
3 nm GaSb cap layer. Importantly, the GaSb substrate is
lattice matched with the subsequent layers, which elimi-
nates the requirement of a thick buffer layer compared to
the commonly used GaAs substrate and therefore enables a
strong coupling between the back gate and quantum wells.
Furthermore, for such choice of substrate, strain and the
amount of dislocations are reduced, resulting in record
values of carrier mobility for this type of DQWs [24,25].
The Hall bars of 100 by 20 μm used in our measurements
are chemically wet etched [inset of Fig. 2(a)]. Ohmic
contacts are fabricated by etching to the InAs layer prior to
evaporation of Tið50 nmÞ=Au (300 nm) layers. A sputtered
70 nm thick Si3N4 gate dielectric layer is used to isolate the
Ti=Au top gate from the heterostructure. Longitudinal
and Hall resistances are measured using standard lock-in
techniques at 300 mK unless otherwise stated. Two
nominally identical devices are studied in detail.
First, we map out the phase diagram of the InAs=GaSb

DQWs by measuring the longitudinal resistance (Rxx) as a
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FIG. 2 (color). (a) Four terminal longitudinal resistance (Rxx) as
a function of VBG and VTG for device No. 1 measured at 300 mK,
showing the phase diagram of the InAs=GaSb DQWs. Lines L
and R cross the two different gapped regions (resistance peaks),
labeled as I and II. Colored dots indicate the positions in gate
space where longitudinal resistance and Hall traces are taken, as
shown in Figs. 3(a) and 3(b). The two green lines indicate the two
less pronounced resistance peaks (see text). Inset shows the
optical image of the Hall bar. The scale bar represents 20 μm. (b),
(c) Resistance along lines L and R, respectively.
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FIG. 1 (color). (a) Schematic of the InAs=GaSb DQWs
structure. E 1 and H1 mark the bottom of the conduction band
and the top of the valence band, respectively, showing an inverted
band alignment. (b) Phase diagram as a function of the applied
electric field (E z) and the Fermi level position (E F ), which can
both be tuned by dual gating using the top gate and back gate. The
vertical white line, along which the electron (red) and hole (blue)
bands touch, separates the normal and inverted band alignment
regimes. (c) Sketch of the phase diagram as a function of back
gate voltage (VBG) and top gate voltage (VTG). The labeled points
in (b) are indicated accordingly in (c). The red and blue lines
mark constant electron and hole densities, respectively. The
yellow dashed lines indicate constant band overlap for the
inverted case or constant band separation for the normal case.
The black dashed line represents charge neutrality. The white
regions above and below point E correspond to the hybridization
gap and the normal gap, respectively.
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blue curves represent the constant density lines for elec-
trons and holes, respectively. These curves bend when the
Fermi level starts to cross both electron and hole bands
(along the green lines) as the total density of states
increases and screening sets in. The constant electron
and hole density lines bend differently according to the
effective masses of the two types of carriers and the
asymmetric quantum well structures. Note that, the phase
diagram shown in Fig. 1(c) follows the calculations by Liu
et al. [5] qualitatively.
Our heterostructure was grown by molecular-beam

epitaxy [24,25]. A 100 nm buffer layer was first grown
on a doped GaSb substrate, followed by a 50 nm AlSb

bottom barrier. The DQWs consist of 5 nm GaSb and
12.5 nm InAs, followed by a 50 nm AlSb top barrier and a
3 nm GaSb cap layer. Importantly, the GaSb substrate is
lattice matched with the subsequent layers, which elimi-
nates the requirement of a thick buffer layer compared to
the commonly used GaAs substrate and therefore enables a
strong coupling between the back gate and quantum wells.
Furthermore, for such choice of substrate, strain and the
amount of dislocations are reduced, resulting in record
values of carrier mobility for this type of DQWs [24,25].
The Hall bars of 100 by 20 μm used in our measurements
are chemically wet etched [inset of Fig. 2(a)]. Ohmic
contacts are fabricated by etching to the InAs layer prior to
evaporation of Tið50 nmÞ=Au (300 nm) layers. A sputtered
70 nm thick Si3N4 gate dielectric layer is used to isolate the
Ti=Au top gate from the heterostructure. Longitudinal
and Hall resistances are measured using standard lock-in
techniques at 300 mK unless otherwise stated. Two
nominally identical devices are studied in detail.
First, we map out the phase diagram of the InAs=GaSb

DQWs by measuring the longitudinal resistance (Rxx) as a
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FIG. 2 (color). (a) Four terminal longitudinal resistance (Rxx) as
a function of VBG and VTG for device No. 1 measured at 300 mK,
showing the phase diagram of the InAs=GaSb DQWs. Lines L
and R cross the two different gapped regions (resistance peaks),
labeled as I and II. Colored dots indicate the positions in gate
space where longitudinal resistance and Hall traces are taken, as
shown in Figs. 3(a) and 3(b). The two green lines indicate the two
less pronounced resistance peaks (see text). Inset shows the
optical image of the Hall bar. The scale bar represents 20 μm. (b),
(c) Resistance along lines L and R, respectively.
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FIG. 1 (color). (a) Schematic of the InAs=GaSb DQWs
structure. E 1 and H1 mark the bottom of the conduction band
and the top of the valence band, respectively, showing an inverted
band alignment. (b) Phase diagram as a function of the applied
electric field (E z) and the Fermi level position (E F ), which can
both be tuned by dual gating using the top gate and back gate. The
vertical white line, along which the electron (red) and hole (blue)
bands touch, separates the normal and inverted band alignment
regimes. (c) Sketch of the phase diagram as a function of back
gate voltage (VBG) and top gate voltage (VTG). The labeled points
in (b) are indicated accordingly in (c). The red and blue lines
mark constant electron and hole densities, respectively. The
yellow dashed lines indicate constant band overlap for the
inverted case or constant band separation for the normal case.
The black dashed line represents charge neutrality. The white
regions above and below point E correspond to the hybridization
gap and the normal gap, respectively.
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blue curves represent the constant density lines for elec-
trons and holes, respectively. These curves bend when the
Fermi level starts to cross both electron and hole bands
(along the green lines) as the total density of states
increases and screening sets in. The constant electron
and hole density lines bend differently according to the
effective masses of the two types of carriers and the
asymmetric quantum well structures. Note that, the phase
diagram shown in Fig. 1(c) follows the calculations by Liu
et al. [5] qualitatively.
Our heterostructure was grown by molecular-beam

epitaxy [24,25]. A 100 nm buffer layer was first grown
on a doped GaSb substrate, followed by a 50 nm AlSb

bottom barrier. The DQWs consist of 5 nm GaSb and
12.5 nm InAs, followed by a 50 nm AlSb top barrier and a
3 nm GaSb cap layer. Importantly, the GaSb substrate is
lattice matched with the subsequent layers, which elimi-
nates the requirement of a thick buffer layer compared to
the commonly used GaAs substrate and therefore enables a
strong coupling between the back gate and quantum wells.
Furthermore, for such choice of substrate, strain and the
amount of dislocations are reduced, resulting in record
values of carrier mobility for this type of DQWs [24,25].
The Hall bars of 100 by 20 μm used in our measurements
are chemically wet etched [inset of Fig. 2(a)]. Ohmic
contacts are fabricated by etching to the InAs layer prior to
evaporation of Tið50 nmÞ=Au (300 nm) layers. A sputtered
70 nm thick Si3N4 gate dielectric layer is used to isolate the
Ti=Au top gate from the heterostructure. Longitudinal
and Hall resistances are measured using standard lock-in
techniques at 300 mK unless otherwise stated. Two
nominally identical devices are studied in detail.
First, we map out the phase diagram of the InAs=GaSb

DQWs by measuring the longitudinal resistance (Rxx) as a
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FIG. 2 (color). (a) Four terminal longitudinal resistance (Rxx) as
a function of VBG and VTG for device No. 1 measured at 300 mK,
showing the phase diagram of the InAs=GaSb DQWs. Lines L
and R cross the two different gapped regions (resistance peaks),
labeled as I and II. Colored dots indicate the positions in gate
space where longitudinal resistance and Hall traces are taken, as
shown in Figs. 3(a) and 3(b). The two green lines indicate the two
less pronounced resistance peaks (see text). Inset shows the
optical image of the Hall bar. The scale bar represents 20 μm. (b),
(c) Resistance along lines L and R, respectively.
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FIG. 1 (color). (a) Schematic of the InAs=GaSb DQWs
structure. E 1 and H1 mark the bottom of the conduction band
and the top of the valence band, respectively, showing an inverted
band alignment. (b) Phase diagram as a function of the applied
electric field (E z) and the Fermi level position (E F ), which can
both be tuned by dual gating using the top gate and back gate. The
vertical white line, along which the electron (red) and hole (blue)
bands touch, separates the normal and inverted band alignment
regimes. (c) Sketch of the phase diagram as a function of back
gate voltage (VBG) and top gate voltage (VTG). The labeled points
in (b) are indicated accordingly in (c). The red and blue lines
mark constant electron and hole densities, respectively. The
yellow dashed lines indicate constant band overlap for the
inverted case or constant band separation for the normal case.
The black dashed line represents charge neutrality. The white
regions above and below point E correspond to the hybridization
gap and the normal gap, respectively.
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extract the hole density [blue solid triangles in Fig. 3(d)] and
a small residual electron density of ∼5 × 1014 m−2, which
may indicate a parallel conducting path.
To substantiate the above identification of the two gaps,

we investigate the band alignment and Fermi level position
for the distinct regions in gate space. We apply a 2 T
perpendicular magnetic field and measure the phase dia-
gram, as shown in Fig. 4. At the right side of the 2D map,
the parallel lines correspond to SdH oscillations. The
uniform spacing indicates a linear change of electron
density as a function of both VBG and VTG. The red curve
follows a fixed Landau level, along which the electron
density is constant. However, following this line towards
the left, at position G the curve bends, indicating a
coexistence of electrons and holes [26]. Such a bend arises
when the Fermi level crosses the top of the hole band (green
solid line). A similar effect happens when electrons come in
at the hole side (green dashed line). The two green lines
originating from point E follow the kinks on the constant
density lines and separate the regions of single type and two
types of carriers. The position of the green lines here is
consistent with the two less pronounced resistance peaks in
Fig. 2(a). Note that, at the gate regime just below gapped
region I (between the green dashed line and the gap in
Fig. 4), the observed SdH oscillations are primarily from
electrons because of the lower mobility for holes than
electrons, even though the holes have a higher density [24].
Importantly, the phase diagram taken in a finite magnetic
field (Fig. 4) as well as the one taken at zero magnetic field

[Fig. 2(a)] are fully consistent with the interpretation that
(i) along the resistance peak from B to E , the electron and
hole bands approach each other in energy with the Fermi
level lying in the middle of the normal gap, (ii) at point E
the two bands touch and the transition from normal to
inverted band alignment takes place, and (iii) towards
position H, the overlap increases and the Fermi level lies
in the hybridization gap.
A further confirmation for the origin of the high

resistance regions is the dependence of the resistance peaks
on the in-plane magnetic field [10,19]. An in-plane mag-
netic field shifts the electron and hole bands in momentum
(in the direction perpendicular to the magnetic field) by a
relative amount of Δky ¼ eB xhzi=ℏ, which is expected to
reduce the hybridization gap but not the normal gap
[10,19]. To investigate this prediction, we focus on device
No. 2, which was mounted in the plane of the two main
axes (x and y) of a vector magnet. Device No. 2 is identical
to device No. 1, in the sense of material, dimensions, and all
fabrication processes. The phase diagram for device No. 2
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neutrality, n = p.  The white regions above and below point E correspond to the hybridization 

gap and the normal gap, respectively.  c) Top: Four-terminal longitudinal resistance as a 

function of top and bottom gate at T = 300 mK, revealing the phase diagram of the InAs/GaSb 

CQW.  Lines L and R indicate the positions in gate space where longitudinal resistance traces 

are taken (Bottom).  Line L passes through region I, the QSHI phase, and line R passes through 

the normal insulator phase, region II.  Inset: Optical image of the Hall bar.  Bottom: Resistance 

along lines L and R. d) In-plane magnetic field dependence of the longitudinal resistance along 

the same lines L and R.  The resistance of L decreases with increasing in-plane field, but for R, 

resistance is constant with field. 

    

6.4  Initial Noise Measurements of Silicon-Doped InAs/GaSb Devices 

 Following the initial measurements of the QSH state in InAs/GaSb QWs, Du et al. sought 

to further suppress the observed residual bulk conductivity through the incorporation of a silicon 

dopant layer (Figure 6.10a).144  Silicon doping yields a truly insulating bulk by localizing the 

bulk states, even at finite temperature, leaving only the edge states to carry conduction.217  A 

relatively small density (103 atoms/µm2) of Si at the interface of InAs and GaSb serve as donors 

to InAs and acceptors to GaSb, creating a localization gap of Dloc ~ 26 K (2.24 meV) in the bulk 

energy spectrum.  The topologically protected edge states, though, are relatively unaffected by 

the disorder.  In L=2 µm samples, this is evidenced by wide plateaus in the longitudinal 

conductance at 2 ~#

q
 for a Hall bar and 4 ~#

q
 for a p bar as a function of front gate voltage, which 

tunes the Fermi energy into the localization gap (Figure 6.10b).  As the length of the Hall bar is 

increased to macroscopic scales, the longitudinal resistance in the localization gap increases 

linearly with device length.   
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 The energy scale of the localization gap was determined from conductance measurements 

of a Corbino disk.  In this geometry, edge transport is shunted by concentric electrodes, so that 

measurements of conductance involve bulk transport exclusively.  The energy gap is found by 

plotting ln(
R

’‰‰
)w. R

ê
, called an Arrhenius plot.  Gxx is fit to +]] ∝ M

V
∆

#ÉÑÖ, where D is the energy 

required to create an electron-hole pair over the gap.  At higher temperatures, they found a gap 

value Dmin ~ 66 K, consistent with a hybridization-induced mini-gap.  Below ~ 10 K, the 

conductance continues to drop exponentially, with a different slope, indicating the opening of a 

localization gap Dloc ~ 26 K.  It is in this regime that the conductance plateaus are observed 

(Figure 6.9c).  The localization gap can be increased to 40 K with a perpendicular magnetic field 

of 6 T.   

 The Fermi velocity of the InAs/GaSb edge states wx~1.5 × 10% m/s is at least an order of 

magnitude smaller than that of GaAs 2D electron gas or HgTe/CdTe (wx~5.5 × 10Ì m/s),218 due 

to the gap opening at a finite wavevector kcross.  The edge scattering time, inversely proportional 

to the Fermi velocity, is thus extremely long, regardless of disorder in the bulk.  The robust 

nature of the topologically-protected edge modes is further demonstrated by the fact that the 

quantized plateaus of shorter samples and the linear resistance of the larger samples was found to 

be independent of temperature between 20 mK and 4 K (Figure 6.10 inset). 
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Figure 6.10: [Adapted from Ref. 144] a) Schematic of the InAs/GaSb CQW with Si doping and 

the potential fluctuations induced by the dopants at the interface.  b) Top: Wide conductance 

plateaus quantized to 
%~#

q
 for the p bar (red) and 

!~#

q
 for the Hall bar (blue).  Top Inset: Plateau 

persists to 4 K, but at higher temperatures conductance increases due to delocalized 2D bulk 

carriers.  Bottom: Longitudinal resistance as a function of front gate voltage for longer devices.  

Bottom Inset: Resistance scales linearly with edge length, indicating a coherence length ~ 4.4 

µm.  The coherence length is independent of temperature between 20 mK and 4 K.  c) Arrhenius 

plot for a Corbino geometry, showing bulk conductance vanishes exponentially with decreasing 

temperature.   

 

 Under perpendicular magnetic field, the authors observed an increase in the four-terminal 

conductance of the Hall bar with increasing field.  In this case, the time reversal symmetry is 

broken as the field pushes the edge states of different chiralities in opposite directions.  

Consistent with a trend toward chiral transport, the authors also observed increases in Hall 
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We have engineered electron-hole bilayers of inverted InAs=GaSb quantum wells, using dilute silicon
impurity doping to suppress residual bulk conductance. We have observed robust helical edge states with
wide conductance plateaus precisely quantized to 2e2=h in mesoscopic Hall samples. On the other hand, in
larger samples the edge conductance is found to be inversely proportional to the edge length. These
characteristics persist in a wide temperature range and show essentially no temperature dependence.
The quantized plateaus persist to a 12 T applied in-plane field; the conductance increases from 2e2=h in
strong perpendicular fields manifesting chiral edge transport. Our study presents a compelling case for
exotic properties of a one-dimensional helical liquid on the edge of InAs=GaSb bilayers.
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Introduction.—Symmetry protected topological order is
a new paradigm in classification of condensed matter
systems, describing certain system observables, such as
charge or spin conductance, via topological invariants, i.e.,
distinct system characteristics which remain unchanged
under smooth deformations of its band structure [1,2].
In addition to topological considerations, time reversal
symmetry (TRS) has been widely believed to be a neces-
sary ingredient for the emergence of the quantum spin Hall
(QSH) insulating phase, commonly characterized via the
Z2 topological invariant [3–6]. Applying a magnetic field
breaks the TRS and removes the topological protection of
the helical liquid (HL) from backscattering. In fact, in the
first realization of the QSH phase in HgTe=CdTe quantum
wells, strong magnetic field dependence has been reported
[6,7] albeit only in larger devices; nevertheless, it has been
theoretically shown [8] that strong backscattering of the
helical edge in magnetic field appears only in the case of
sufficient disorder in the system, suggesting that the
presence of magnetic fields is not a sufficient condition
to gap out the edge states, and the ultimate fate of HL under
TRS breaking may depend on the exact microscopic
details of the system. Here we present data of robust HL
edge states in engineered semiconductor systems that are
immune to disordered bulk, as well as perturbations from
external magnetic fields.
The quantum spin Hall insulating state is here realized in

InAs=GaSb quantum wells where electron-hole bilayer
naturally occurs due to the unique broken-gap band align-
ment of InAs and GaSb [9]. In particular, the conduction
band of InAs is some 150 meV lower than the valence band
of GaSb, which results in charge transfer between the two
layers, and emergence of coexisting 2D sheets of electrons
and holes, trapped by wide gap AlSb barriers, as shown in
Fig. 1(a). The positions of the electron and hole subbands

can be altered by changing the thickness of InAs and GaSb
layers, resulting in topologically trivial and nontrivial
energy spectra shown in Fig. 1(b) for narrower wells
and wider wells, respectively [10,11]. In addition, due to
the charge transfer and resulting band bending, both the
topology of the band structure as well as the position of the
Fermi energy can be continuously tuned via front and back
gates [10–12].
In the topologically nontrivial regime, electron-hole

subbands cross for some wave vector values kcross

FIG. 1 (color online). Two-dimensional topological insulator
engineered from interfacing two common semiconductors,
InAs and GaSb, which hosts a robust quantum spin Hall
effect. (a) Schematic representation of the band structure of a
InAs=GaSb bilayer and the potential fluctuations induced by Si
dopants at the interface. (b) The helical edges in an inverted
bilayer where the edge states must cross to form a 1D Dirac
dispersion. (c) Typical quantum transport device configuration
with front electrostatic gate (in light green) and a Corbino disk. In
the left-hand panel of (c), spin-momentum locking is illustrated,
e.g., the upper edge has a Kramers pair consisting of a right
mover with spin-up and a left mover with spin-down.
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[see the crossing of dotted curves noted by red circles,
Fig. 1(b) right-hand panel], and due to the tunneling
between the wells, electron and hole states hybridize,
lifting the degeneracy at kcross and opening an inverted
mini gap Δmin [11,12] on the order of 40–60 K. It has been
proposed [13] that a Kramers pair of spin-momentum
locked edge modes should exist on the sample perimeter
[see black lines, Fig. 1(b) right-hand panel]. Initial evidence
for such helical states [14,15] has been previously reported,
albeit their unequivocal identification has been limited due
to finite bulk density of states in the minigap [16,17],
resulting from disorder broadening and imperfect hybridi-
zation of electron-hole levels.
Quantized conductance plateau of helical edge state.—

The semiconductor wafers of the InAs=GaSb bilayers
were grown by MBE. A typical wafer structure contains
a Nþ GaAs (001) substrate, 1 μm thick insulating buffer
layer, 12.5 nm InAs=10 nm GaSb quantum wells with
barriers made of 50 nm AlSb, and 3 nm GaSb cap layer.
More details can be found in previous work [14]. For this
study, the interface between GaSb and InAs was doped
with a sheet of Si during the MBE process, with a sheet
concentration of ∼1 × 1011 cm−2. Transport measurements
were performed in two cryostats, with a He3 refrigerator of
base temperature 300 mK and a He3-He4 dilution refrig-
erator (20 mK), and magnetic fields up to 12 T. Electrical
transport data were measured using a standard lock-in
technique (17 Hz and bias current 10–100 nA).
A critical advance of the present samples from those in

Refs. [14,15] resulted from Si doping, which makes a truly
insulating bulk and the edge states now become the only
conduction channels. Remarkably, as shown here, these 2D
bulk states can be localized [18] even at finite temperatures
by Si dopants of a relatively small density (equivalent to
1000 atoms in a 1 μm × 1 μm device) at the interface,
which serve as donors in InAs and acceptors in GaSb,
creating a localization gap ofΔloc ∼ 26 K in the bulk energy
spectrum. On the other hand, because the edge states are
topological in nature, the disorder has very little effect on
their existence and transport properties. In fact, as the Fermi
energy is tuned into the localization gap via front gates,
longitudinal conductance measurements for mesoscopic
2 μm × 1 μm samples reveal wide plateaus that are quan-
tized to 4e2=h (in the Hall bar), or 2e2=h (in the π-bar),
respectively [Fig. 2(a)], as expected for nonlocal transport
in helical edge channels [5,13] based on Landauer-Büttiker
analysis [19] (see Supplemental Material for detailed
analysis, as well as quantized conductance measured in
an H-shaped mesoscopic sample [20]). Note that the
conductance value here is quantized to better than 1%—
unprecedented by any other known topologically ordered
system other than integer and fractional quantum Hall effects
[21], indicating a high degree of topological protection.
Furthermore, as the length of the Hall bar L [defined

in Fig. 1(c)] is increased to macroscopic dimensions,

longitudinal resistance in the localization gap linearly
increases with the device length. In this case, approximate
longitudinal resistance is obtained by series addition of
N ∼ L=λφ half-quantum resistors, giving a total resistance
value of ðL=λφÞ • h=2e2, where λφ is a characteristic
length at which edge transport breaks down and counter-
propagating spin-up and spin-down channels equilibrate.
This approximation is in excellent agreement with the data
presented in Figs. 2(c) and 2(d), giving λφ ¼ 4.4 μm in the
temperature range from 20 mK to 4.2 K.
Insulating bulk state.—We note that in the context of

integer quantum Hall effects, a precisely quantized Hall
conductance (to multiples of e2=h) is due the opening
of a localization gap in the Landau level spectrum [22];
here, the existence of a wide conductance plateau
should be attributed to the opening of a localization gap
Δloc promoted by Si doping. The energy scale of Δloc is

FIG. 2 (color online). Helical edge transport in meso- and
macroscale devices. (a) Wide conductance plateaus quantized to
2e2=h and 4e2=h, respectively, for two device configurations
shown in inset, both have length 2 μm and width 1 μm.
(b) Plateau persists to 4 K, and conductance increases at higher
temperature due to delocalized 2D bulk carriers. (c) Electrical
charge transport in large devices is due to edge channels. (d) The
resistance scales linearly with the edge length, indicating a phase
coherence length of 4.4 μm; the coherence length is independent
of temperature between 20 mK and 4 K.
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quantitatively determined from transport measurements in a
Corbino disk, shown in Fig. 3, as a function of temperature
and magnetic field. In this geometry, edge transport is
shunted via concentric contacts, and hence conductance
measurements probe bulk properties exclusively. In this
case, transverse conductance is suppressed to zero in the
localization gap, showing exponentially activated temper-
ature dependence and allowing direct extraction of gap
values.
Analysis of an Arrhenius plot [Fig. 3(b)] is followed by

a standard procedure in quantum transport to deduce the
energy gap: Gxx ∝ expð−Δ=2kBTÞ, where Δ is the energy
required to create a pair of electron-hole over the gap
and kB is the Boltzmann constant. At higher temperature,
the gap value Δmin ∼ 66 K is deduced, consistent with
a hybridization-induced minigap. As the temperature is
further reduced below ∼10 K, the conductance continues to
vanish exponentially with a different slope, indicating
opening of the localization gap Δloc ∼ 26 K in the energy
spectrum; a wide conductance plateau emerges only in
this regime. As shown in Fig. 3(e), the localization gap
increases from 26 K at zero magnetic field to 40 K at 6 T

perpendicular field. As a consequence, at temperatures on
the order of 1 K and below, the system is completely bulk
insulating and transport occurs only along the edge. As a
result, quantized conductance in mesoscopic structures
and finite resistance values in longer devices shown in
Fig. 2 are solely a property of the topological edge
channels. We note recent work reporting superconducting
quantum interference device imaging of edge current in our
Si-doped InAs=GaSb samples [23], as well as nonlocal
transport evidences presented for a similar system, albeit
in latter cases bulk conductance exists rendering imperfect
insulators [24,25].
Small Fermi velocity of edge state.—The Fermi velocity

of the InAs=GaSb edge state νF ∼ 1.5 × 104 m=s is at least
1 order of magnitude smaller than that of GaAs 2D electron
gas (2DEG) or HgTe=CdTe (νF ∼ 5.5 × 105 m=s) [7] due
to the fact that the gap opens at a finite wave vector kcross
instead of the zone center. Remarkably, the edge scattering
time, i.e., τ ¼ λφ=νF ¼ 2λφkcross=Δ ≈ 200 ps (approaching
that of the highest-mobility 2DEG in GaAs) [26], appears
to be extremely long regardless of the disordered bulk.
In addition, the quantized plateau and the linear resistance
(larger samples) are found to be independent of tempera-
ture between 20 mK and 4 K [Figs. 2(b) and 2(d); see also
Ref. [23]]. All together, we present convincing evidences
that the HL edge in the InAs=GaSb bilayer is substan-
tially robust against nonmagnetic disorder scattering,
manifesting TRS protection. On the other hand, data
suggest temperature-independent, residual backscattering.
In Refs. [27,28] it is proposed that correlated two-particle
backscattering by an impurity can become relevant while
keeping the TRS, but this term should be temperature
dependent. In Ref. [29] the authors study the influence of
electron puddles created by the doping of a 2D topological
insulator on its helical edge conductance and find the
resulting correction to the perfect edge conductance. The
relevance of charge puddles in the bulk of InAs=GaSb is
beyond the scope of present work and remains an interest-
ing issue for future studies. In general, here the smallness of
νF strongly suggests that InAs=GaSb helical liquid is an
interacting 1D electronic system and correlation effects
may play certain roles in the transport properties [30,31].
Edge state under broken TRS.—The fate of the Z2 TIs

under broken TRS is a fundamental question in under-
standing the physics of topological matter but remains
largely unanswered. Here we study the edge transport
properties under TRS breaking by applying magnetic
fields along each major axis of the device, examined up
to 12 T. Unexpectedly, under in-plane magnetic fields
applied, respectively, either along or perpendicular to the
current flow, the localization-gap conductance plateau
value remains quantized for mesoscopic samples [32],
and it stays constant for longer devices, even for fields
close to 10 T [Figs. 4(a) and 4(b)]. As far as the edge
conductance is concerned, this can be interpreted as a

FIG. 3 (color online). Corbino measurement of the insulating
bulk state. (a) The temperature-dependent conductance traces
measured in a Corbino disk are displayed. (b) The Arrhenius plot
shows that the conductance vanishes exponentially with T. The
conductance measured in Corbino disk at T ¼ 300 mK is shown,
respectively, for magnetic field applied in the plane (c) or
perpendicular to the plane (d). In either case, there is no evidence
for gap closing at increasing magnetic field; a continuous
magnetic field sweep shows that 2D bulk is always completely
insulating from 0 to 8 T. (e) The localization-gap energy is shown
to increase with applied perpendicular magnetic field.
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resistance with increasing field.  In the two-terminal device, conductance decreased with 

increasing field, due to the fact that in two-terminal high-field magnetotransport, the signal is 

dominated by the Hall resistance, which increases with field.219   

 The observations of Knez et al., Du et al., and others with arguments for the presence of 

the two-dimensional topological insulator state in InAs/GaSb CQWs spurred some controversy 

over the nature of the edge states.  For example, Nichele et al. demonstrated the existence of 

edge states in the trivial regime of InAs/GaSb.220  They found that resistance scaled linearly with 

device length, down to values below 
q

~#
 for short edges, in contrast with the expected length-

independent resistance when length is shorter than the coherence length for truly ballistic helical 

edge modes.  Trivial edge modes can form and be populated by carriers due to band bending at 

the device edges, and in this case, edge conduction would be multi-channel. 

 Using the methods described in Section 2.6 and Section 5.3, we know it is possible to use 

shot noise to distinguish between single- and multi-channel transport.  Therefore, measurements 

of the shot noise can differentiate between the trivial edge states due to band bending (multi-

channel) and nontrivial, time reversal symmetry protected edge states (single-channel).  

Furthermore, as discussed in Section 3.7, shot noise has been proposed as a useful probe for 

determining the root cause of backscattering in two-dimensional topological insulators.  Aiming 

to verify the nature of the edge modes, we measured noise in two-terminal InAs/GaSb QWs as a 

function of temperature, gate voltage, and perpendicular magnetic field.   

 

6.4.1  Sample Structure and Measurement Setup 

 Figure 6.11 is an SEM image and two optical images of example devices, fabricated by 

Tingxin Li at Peking University.  The wafers were grown by molecular beam epitaxy (MBE) at 
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Teledyne by Gerard Sullivan and included the silicon doping layer discussed in the previous 

section, with a concentration of about 1011 cm-2.  As seen in Figure 6.11, source and drain cover 

the entire width of the quantum well mesa, so that a two-terminal measurement should include 

contributions from both edges.  A top gate covers the mesa to tune the Fermi level of the CQW.   

 

Figure 6.11: SEM image of one of the long devices.  Insets: Optical images of one of the long 

devices (left) and one of the short devices (right). 

 

 Samples of two different lengths were measured; for the first, the distance between the 

source and drain contacts was 14 µm, and the mesa and front gate length was 10 µm (Figure 

6.11 left inset), and for the second, the contacts were separated by 2.5 µm, and the mesa was 

approximately 1µm (Figure 6.11 right inset).  Based on the previous studies, the short sample 

gate

source
drain

The markers shown in Fig. 1 can be used for identify the specific device. Only device 2 and 
device 3 can be used. The front gate of device 1 has a leaking problem. 
 

     

Fig. 2 Device 2 and device 3 of sample A 

The distance between two contacts is ~ 14 um, and the width of the mesa also the length of 
the front gate is ~ 10 um. As shown in Fig. 3, the resistances of the devices at Vf = 0 V are ~ 
16 kOhms, which is reasonable since the square resistance of this wafer is ~10-15 kOhms, 
according to our previous testing. Therefore, I estimated the non-channel series resistance is ~ 
5 kOhms at 4.2 K. Another way to estimate the non-channel series resistance is to sweep the 
front gate to very positive values, however, for this sample, the front gates cannot work at 
very positive values (began to leak when Vf > 0.7 V and Vf > 0.3 V for device 2 and device 3, 
respectively). 

 

 

Device 2 
Device 3 

Sample A, Device 3 

(a) 

         

Fig. 5 Device 1 and device 2 of sample B 

The distance between two contacts is ~ 2.5 um; the width of the mesa is ~10 um, and the 
length of the front gate is ~ 1 um. As shown in Fig. 6, the resistances of the device 2 at     
Vf = 1.4 V are ~ 1.5 kOhms. Therefore, I estimated the non-channel series resistance is     
~ 1 kOhms at 4.2 K. 
 

 

Fig. 6 Rxx-Vf traces of device 2, sample B 

Note that the resistance peak value of structure 2 is less than the quantized value (even at 300 
mK, the peak value is only ~10.5 kOhms), and the specific reason is still unknown (bulk 
residual carriers or something else), but I think it still can be used for testing. 

Device 1  Device 2 
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should be within the coherence length of the edge modes, while the longer sample should be 

subject to backscattering processes due to disorder.   

 Conductance measurements were performed as described in Section 4.3, and noise 

measurements were executed using the lock-in based broadband rf technique outlined in Section 

4.4.   

 

6.4.2  Results 

Temperature Dependence 

 In both devices, as temperature is decreased, conductance decreases as expected for the 

gapping out of bulk states.  At low temperatures, both devices also show a zero-bias conductance 

suppression, with a wider and stronger suppression observed in the shorter device (Figure 

6.12a,b).  In general, the longer device exhibits more Ohmic behavior.  At temperatures 

comparable to the hybridization gap (40-60 K) and above the localization gap of residual bulk 

conduction, noise in both devices as a function of applied voltage bias is monotonic.  In the short 

device at this higher temperature range, the lock-in detected differential current noise is roughly 

flat with applied bias voltage up to approximately 30 mV (Figure 6.12c) before growing linearly 

with bias voltage.  The overall magnitude of the noise in the longer device at the higher 

temperatures is lower than that in the short device, consistent with the expectation that there 

would be more dephasing scattering events for a device longer than the coherence length.  As 

temperature is decreased, an interesting trend occurs for both devices: the nonequilibrium noise 

power decreases with increasing bias up to some finite bias (~ 30 mV for the short device, ~ 100 

mV for the long device) at which point it then turns upward and begins to increase with 

increasing bias (Figure 6.12c,d).  In other words, at low biases, the overall noise power is lower 
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at finite bias than it is at zero bias.  This is interpreted as negative differential current noise 

power by the lock-in, which returns SI(V) – SI(V=0) (Section 4.4), and this difference grows more 

negative with increasing bias until the voltage reaches some critical value above which 

nonequilibrium noise once again increases linearly with bias voltage.   

 

Figure 6.12: a,b) Differential conductance as a function of temperature in the short device (a) 

and the long device (b)  As expected, conductance decreases with decreasing temperature as the 

2D bulk states are gapped out.  At low temperatures, both devices exhibit a zero-bias 

conductance suppression.  c,d) Differential noise power as a function of temperature for the 

short (c) and long (d) devices.  For both devices, as temperature is decreased, differential noise 
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is increasingly negative with applied bias until some critical bias voltage, above which the noise 

begins to increase linearly with bias. 

 

Gate Bias Dependence 

 At T = 1.8 K, when a positive voltage is applied to the top gate, InAs electron-like states 

are filled, and consequently, the conductance of both devices slightly increases (Figure 6.13d).  

As a negative gate voltage is applied, the system reaches the topological insulator phase, with the 

longitudinal resistance plateau manifesting in the range of approximately -0.75 to -1.25 V for 

both devices.  In the noise of the short device, the nonmonotonic trend is weakened as the gate is 

swept either positively or negatively; by Vg = 1 V, it has disappeared completely, and at Vg = -1.2 

V, it is still somewhat present, but is greatly reduced (Figure 6.13b,c).  In the long device, the 

nonmonotonic noise shape is not significantly diminished by a positive gate voltage, but it is 

nearly suppressed by Vg = -0.75 V (Figure 6.13e).   
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Figure 6.13: a,d) Differential conductance as a function of gate voltage for the short (a) and 

long (d) devices.  Resistance peak for both devices happens around Vg = -0.75 -  -1.25 V.  b,c,e) 

Differential current noise with varying gate voltage for the short (b,c) and long (e) devices.  

Nonmonotonic noise behavior is suppressed as gate voltage is increased positively or negatively. 

 

Magnetic Field Dependence 

 With increasing perpendicular magnetic field, conductance in both devices decreased 

(Figure 6.14a,b), consistent with the two-terminal results of Du et al.144  In both devices, the 

nonmonotonic noise trend is weakened by the perpendicular magnetic field.  In the long device, 

it is completely suppressed by B = 4 T (Figure 6.14d), and in the short device, the noise behavior 

is monotonic by 5 T (Figure 6.14c).  Additionally, in the high-bias regime, , when noise exhibits 

the expected positive linear dependence with bias, the slope of SI(V), proportional to the Fano 

factor, also decreases with increased magnetic field. 
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Figure 6.14: a,b) Differential conductance with varying perpendicular magnetic field in the 

short (a) and long (b) devices.  Increasing field decreases conductance in both devices. c,d) 

Differential current noise in the short (c) and long (d) devices.  Negative noise trend decreases 

with increasing field. 

 

6.4.3  Discussion 

 The decrease in noise power with increasing bias is unique to these doped InAs/GaSb 

structures.  As this behavior was observed in devices both longer than and shorter than the 

coherence length predicted by Du et al. (lf ~ 2 µm),144 it is likely a bulk effect and not due to 

scattering processes at the edges.  The most probable explanation is that the silicon dopant layer 
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produces generation-recombination (GR) noise in the quantum wells that competes with the shot 

noise.  The electric field that arises between the source and drain when a voltage is applied 

across the junction leads to ionization of the Si dopants, suppressing this noise, resulting in a 

lower overall noise power at finite bias than at zero bias, until the bias is large enough to allow 

shot noise to dominate.   

 Generation-recombination noise arises due to fluctuations in the number of free carriers 

associated with random transitions of charge carriers between states in different energy bands, 

such as transitions between the conduction band and localized states within the energy gap of a 

semiconductor.221–224  Figure 6.15 is an example of a current spectral density demonstrating 1/f, 

GR, and Johnson-Nyquist noise as frequency is increased, based on experiments in n-type 

silicon.    

 

Figure 6.15: [Adapted from Ref. 221] Current spectral density of an example n-doped Si device, 

with indications of ranges of 1/f, generation-recombination, and thermal noise.   

 

The standard theory for GR noise is derived for a two-level system, with a probability per 

unit time for a free carrier to be generated via a transition from the impurity level to the 

2 Mitin, Reggiani, and Varani 

1. INTRODUCTION 

Generation-recombination (GR) noise is due to fluctu-
ations in the number of free carriers inside of a two-
terminal sample associated with random transitions of 
charge carriers between states in different energy bands. 
Accordingly, it represents a typical noise source in semi-
conductor materials where carrier concentration can vary 
over many orders of magnitude. Typical examples of tran-
sitions are between conduction band and localized levels 
in the energy gap, conduction and valence bands, etc. 
Therefore, GR noise is inherently due to fluctuations of 
carrier number, usually keeping charge neutrality of the 
total sample. 

The first experimental evidence of GR noise in semi-
conductors dates the 1951, and its physical interpretation 
(together with the introduction of the GR name) was 
given a few years later [1]. Since then, many experiments 
were performed on a variety of semiconductor materials 
and devices and detailed theories were developed. For 
widely used reviews and books summarizing the present 
knowledge we address the reader to Refs. [2-9]. 

The essence of GR noise can be illustrated by con-
sidering the simple system provided by a macroscopic 
semiconducting resistor with resistance R in which the 
instantaneous number of free electrons N (t), taken as 
majority carriers, fluctuates between two levels, that is, 
the conduction band and the donor impurities. Within a 
relaxation time approximation, GR noise can be related 
to the resistance R (conductance G = 1/R) fluctuations 
with spectral densities given by 

SN(W) 8N2 4TN 
(1)N5 N5 1 + (WTN )2 

with SR(W), SG(w), SN(W) the spectral density of resis-
tance, conductance, and carrier number, respectively, 
W= 21Tf the circular frequency, 8N2 the variance of car-
rier number fluctuations, No = N the average number of 
free carriers with bar denoting ensemble or time average 
(ergodicity is usually assumed to hold), and TN the carrier 
lifetime. 

The spectrum of the fluctuations in Eq. (1) is of 
Lorentzian type with two parameters, that is, the rela-
tive variance of number fluctuations and the lifetime of 
charge carriers, to be determined. The above spectrum 
generally refers to thermal equilibrium conditions. As 
such, when measuring current or voltage fluctuations it 
can be detected only as excess noise, defined as the elec-
tron noise beyond that of thermal equilibrium (Nyquist 
noise) in the presence of an external bias (voltage V or 
current J). By assuming that the external bias does not 
modify the noise sources, and treating the noise sources 
as independent, a suitable way to detect experimentally 
GR noise is to analyze an excess noise spectrum in terms 

of a phenomenological expression for the current spec-
tral density, S/(w), which includes also Nyquist [10] and 
1/f (or flicker) [2] unavoidable contributions as 

21TCS/(w) = 4K8TRe[Y(w)] + + J2 (2) 
No w 

with K 8 the Boltzmann constant, T the bath tem-
perature, Re[Y(w)] the real part of the small signal 
admittance, and C a numerical parameter giving the 
strength of the l/f contribution. (Quantum corrections 
are here neglected; that is, the fiw/(K8T) « 1 condition 
is assumed henceforth.) 

The analogous expression for the voltage spectral den-
sity Sv(w) is written 

221TCSv(w) = 4K8TRe[Z(w)] + + V (3)
No w 

with Re[Z(w)] the real part of the small signal 
impedance. We note that the relation 

Y(w)Z(w) = 1 (4) 

is always satisfied. 
The typical cutoff frequencies are (i) over the THz 

region for thermal noise, (ii) below the GHz region for 
GR noise, and (iii) below the MHz region for 1/f noise. 
As a consequence, the noise spectrum can usually be 
resolved in frequency thus providing the GR parameters 
with sufficient accuracy through the determination of the 
plateau and the corner frequency, as depicted in Figure 1 
where the noise spectrum of n-Si [11, 12] is shown to be 
fitted on the basis of Eq. (2). We note that to better evi-
dence GR from 1/f noise it is sometimes convenient to 
plot on a log-log scale the product wS/(w) vs. w so that 
the presence of GR noise emerges in forms of peaks over 
a 1/f spectrum [13]. 

The above identification of GR noise is in general com-
plicated by several phenomena which makes the excess 
noise spectrum quite far from the simple type proposed 
above, as summarized in the following main points. 

1  
- I ::[ >=:::\1  

1010 1011104 105 1()6 107 108 109 

f (Hz) 

Figure 1. Schematic of a current spectral density evidencing 1/J, GR, 
and thermal noise sources at increasing frequencies. Full circles are 
experiments on n·Si after Ref. [12]. The curve is a fitting using Eq. (2) 
in the form 5,(w) = A/[1 + (WT",)'] + 8/[1 + (WTN)'] +2-rrC/w, with 
A = 2.3,8 = 3.0, C = 6.0 X 107 Hz, Tm = 10 ps, TN = 10 ns. 

Thermal
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conduction band, g(N), and a probability per unit time that an existing free carrier will undergo a 

recombination transition from the conduction band to the impurity level, r(N).221  It is assumed 

the rates g and r depend only on the instantaneous number of carriers in the conduction band, 

N(t), and in general, g tends to decrease with N and r tends to increase with N, with the specifics 

dependent on the particular system of interest.  Under steady state or stationary conditions, 

ñ£ = ñ(X£) = Ù(X£) = 	 Ù£. (6.10) 

The probability of finding N electrons in the conduction band at time t can be approximated with 

a  normal law for N(t) near the steady state value N0 

¥(X) = ¥(X£)M
V
(¨Å¨Æ)

#

#ó¨#””””””” . (6.11) 

If the generation and recombination rates are rewritten as 
R

Dq
= − ;V

;Z¨{¨Æ
= −ñ£

L  and 
R

D–
=

;œ

;Z¨{¨Æ
= Ù£

L, then we have 

>Z =
R

œÆ
òVVÆ

ò , (6.12) 

µX!”””””” = VÆ
œÆ
òVVÆ

ò = ñ£>Z,  (6.13) 

and the spectral density of the fluctuations in the number of charge carriers is  

∂Z(‡) = 4ñ£>Z
! R

RW(#D¨)#
, (6.14) 

where tN is the majority charge carrier lifetime.  The current noise spectral density due to GR 

noise can be written as 

∂ø(‡) = )! √¨
(#)

ZÆ
# = )! ôZ

#””””””

ZÆ
#

%D¨
RW(#D¨)#

. (6.15) 

The typical cutoff frequency range for GR noise is below the GHz region.221  Therefore, 

it is reasonable to expect some GR noise in our RF range of approximately 250-600 MHz.  

Furthermore, for doped, or extrinsic, semiconductors, GR noise is expected to have a strong 
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temperature dependence, with tN (and thus SI,GR) rapidly decreasing with increasing 

temperature.224,225   

Early studies of GR noise in extrinsic semiconductors also demonstrated that GR noise 

could give way to shot noise, displaying a linear relationship with applied current.222,226,227  This 

is possible when the transit time from source to drain, >ê =
/

ØC
, where L is the length between 

source and drain and vd is the drift velocity, becomes the shortest time scale compared to the 

lifetime of the GR processes and the dielectric relaxation time, >; =
ö–öÆ
~Aè

, where hœ is the relative 

static dielectric constant, h£ is the permittivity of free space, n is the free carrier concentration, 

and µ is the carrier mobility.  It is conceivable, then, that at low applied biases, GR noise, which 

is present even at zero bias, decreases with increasing bias until vd becomes large enough to 

allow >ê to be the shortest timescale.  As bias increases past this critical point, shot noise 

becomes detectable with a positive linear bias dependence.   

In addition to the temperature dependence agreeing with expectations for GR noise, the 

gate and magnetic field dependence also seem well-explained by a GR picture.  As the gate 

voltage adjusts the Fermi level of the system, the mobile charge carriers become less vulnerable 

to trapping.  When an applied perpendicular magnetic field is increased, and the two-terminal 

edge conduction is suppressed due to localization effects, both GR and shot noise also decrease.  

Furthermore, the larger bias required to suppress the nonmonotonic trend in the longer device is 

consistent with the scaling of the transition from GR to shot noise with the transit time between 

source and drain; a shorter L requires a smaller vd to yield a small transit time.   

 While silicon-doped InAs/GaSb quantum wells are no longer in use for QSH studies, this 

interesting result demonstrates how other forms of noise can manifest in 2DTIs. 
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6.5  Noise Processes in InAs/Ga0.68In0.32Sb Corbino Structures 

 In a newer iteration of InAs/GaSb quantum spin Hall insulators, Du et al. explored the 

enhancement of the bulk gap in strained-layer InAs/GaInSb quantum wells.190   The strain effect 

caused by inserting In atoms into the GaSb lattice causes changes in the band structure of the 

CQW (Figure 6.16),228 allowing the QWs to be made narrower, which in turn yields stronger 

overlap between the electron and hole wavefunctions.  As a result, insulating hybridization gaps 

at low temperatures are possible even when the charge density at the CNP, ncross, exceeds 3 ´ 

1011 cm-2.   

 

Figure 6.16: [Adapted from Ref. 228] Assumed band positions for unstrained (left) InAs, GaSb, 

and InSb and in comparison, the effect of strain on InAs and Ga0.6In0.4Sb (right). 

 

 The strained-layer InAs/Ga1-xInxSb superlattice (SL) was first proposed by Smith and 

Maihiot in 1987 for infrared detectors.228  Alloying GaSb (lattice constant ~6.1 Å) with InSb 

(lattice constant ~6.4 Å) causes strain in the crystal growth plane, resulting in a downward shift 

of the conduction band (CB) energy of InAs and a split in the energy level of the valence band 

Proposal for strained type II superlattice infrared detectors 
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Xerox Webster Research Center, 800 Phillips Road, 0114-41D, Webster, New York 14580 
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We show that strained type II superlattices made of InAs-Ga\ _ x Inx Sb x -0.4 have favorable 
optical properties for infrared detection. By adjusting the layer thicknesses and the alloy 
composition, a wide range of wavelengths can be reached. Optical absorption calculations for a 
case where A.c -lO pm show that near threshold the absorption is as good as for the HgCdTe 
alloy with the same band gap. The electron effective mass is nearly isotropic and equal to 0.04 
m. This effective mass should give favorable electrical properties, such as small diode tunneling 
currents and good mobilities and diffusion lengths. 

I. INTRODUCTION 
At present there is a major effort to construct two-di-

mensional arrays of photovoltaic detectors for the purpose 
of infrared imaging. \ The Hg \ _ x Cdx Te alloy is the material 
used to fabricate such detector arrays. Large tunneling cur-
rents and the requirement of extremely precise composition 
control to accurately determine the band gap (or equivalent-
ly the cutoff wavelength A.c ) are two major difficulties in 
making such detector arrays. \ These problems are especially 
severe forlong wavelength (A. c > lOpm) applications. It has 
previously been shown that small band-gap superlattices 
have intrinsic advantages compared to the Hg\ _ x Cdx Te 
alloy for long wavelength photovoltaic detectors.2 Superlat-
tices of HgTe-CdTe3 in which one of the constituent materi-
als (HgTe) is a semimetal, and lnAso.4Sbo.6-lnAs\_xSbx 
(Ref. 4) (x> 0.6), in which strain is used to reduce the band 
gap of the InAso.4 Sbo.6 quantum well, have been suggested 
as infrared detector materials. In this paper, we demonstrate 
a new approach to achieve small band-gap superlattices ap-
propriate for infrared detector applications which has ad-
vantages compared with previous efforts. Our basic idea is to 
use strained type II superlattices to achieve small band-gap 
materials with sufficiently thin repeating layers so that the 
superlattice has good optical absorption properties. Because 
the repeating layers are thin, these superlattices also have 
favorable electrical transport properties in the growth direc-
tion. 

InAs-GaSb is a type II superlattice in which the conduc-
tion band ofInAs is lower in energy than the valence band of 
GaSb.5-9 Because of this unusual band line up, the superlat-
tice can have a band gap smaller than that of either constitu-
ent material. Indeed, the superlattice can even be metallic. 
However, also because of this band lineup, the electrons and 
holes tend to be localized in different material layers, the 
electrons in the InAs and the holes in the GaSb. As a result 
the optical matrix elements decrease rapidly with increasing 
superlattice period.9 For the thicker layer superlattices (sin-
gle material layer thickness, d > 50 A) required to reach long 
wavelength (A.c > lO pm) sensitivity, the optical matrix 
elements are too small for the material to be useful for infra-
red detector applications. \0 Here we show that by alloying 

the GaSb with InSb, so that the superlattice is 
lnAs-Ga\ _ x Inx Sb, small band-gap superlattices (A.c > lO 
pm) can be achieved for sufficiently thin material layers 
(d < 25 A) that the spatial separation of electrons and holes 
is weak. Thus, this superlattice has good optical absorption 
properties. Alloying GaSb with InSb increases the lattice 
constant of the material and causes InAs-Ga\ _ x Inx Sb to be 
strained. Strain effects lead to the favorable properties of this 
superlattice. [The lattice constants of InAs and GaSb are 
nearly equal (t1a/a -0.6%) and strain effects in this super-
lattice are small. ] 

II. CALCULATIONAL RESULTS 
In this section we present electronic structure and opti-

cal absorption calculations for the InAs-Ga t _ x Inx Sb su-
perlattice. The calculational approach is described in detail 
in Refs. 11-13. Parameters required for the calculation, ex-
cept for the valence-band offset, are chosen as described in 
those references. The choice of valence-band offset is de-
scribed below. 

In Fig. 1 (a), we show the energy-band positions for un-
strained InAs, GaSb, and InSb. The conduction band of 
lnAs is 0.1 eV (!::.Ev = 0.51 eV) below the valence band of 

(0) (b) 
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FIG. 1. Assumed energy positions for unstrained lnAs, GaSb, and ll\Sb 
(panel a). Effect of strain on the energy positions for InAs and Gao .• Ina .• Sb 
(panel b). 
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(VB) in GaInSb between the heavy hole (HH) and light hole (LH) levels.  The HH level rises 

higher than the original top VB in GaSb.  Therefore, the QSHI state can be reached in narrower 

QWs of strained-layer InAs/GaInSb compared to the unstrained InAs/GaSb case.  The 

hybridization gap should increase in these narrower wells due to the enhanced overlap of the 

electron and hole wavefunctions.  Furthermore, due to the energy splitting of the HH and LH 

levels in GaInSb, the Fermi surfaces of the electrons and holes should be better matched to each 

other, which could help reduce residual nonhybridized carriers.   

 Figure 6.17a is the band structure for the InAs/Ga0.68In0.32Sb QWs used in this study, 

calculated using the eight-band Kane model.  The results indicate a hybridization gap of about 20 

meV, a roughly fivefold enhancement over previous unstrained InAs/GaSb QWs with D ~ 4 

meV.  Figure 6.17b is a TEM image of the InAs/Ga0.68In0.32Sb wafer, indicating the crystalline 

structure remains coherent across the heterostructure, despite the approximately 1.5% in-plane 

strain.   
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Figure 6.17: [Adapted from Ref. 190] a) Calculated bulk band structure of InAs/Ga0.68In0.32Sb 

CQW. The strain effect splits the heavy and light hole bands, and the strain effect creates a 

hybridization gap of about 20 meV. b) TEM image of the InAs/Ga0.68In0.32Sb wafer, showing the 

crystalline structure is intact throughout the heterostructure.   

 

 Du et al. directly measured the bulk conductance of the strained-layer QWs using 

Corbino devices, in which any edge conduction is shunted.  Figure 6.18 shows the conductance 

for different concentrations of indium as a function of temperature.  Based on the temperature 

dependence, the hybridization gaps were estimated by fitting the Arrhenius plot to M
V

∆
#ÉÑÖ, with D 

~ 250 K for InAs/Ga0.68In0.32Sb.  Furthermore, the coherence lengths of the strained-layer 

devices, the length scale at which dissipationless edge transport breaks down and the 

counterpropagating channels equilibrate, were ~ 5-11 µm, a significant improvement on past 

devices.121,144 

3 × 1011 cm−2. In addition, the helical edge conductance
decreases under either perpendicular or in-plane magnetic
fields, indicating the opening of mass gaps in the edge
states. Remarkably, we found that the edge conductance
and the magnetic response are correlated with vF, which
could be well controlled by lattice strain and the gate
voltages.
Strain effect in InAs=GaInSb.—Strain engineering is a

common way to modify the band structure and physical
properties for semiconductor materials, and recently for
topological materials [25,26]. Specific to the InAs=GaInSb
system, the strained-layer InAs=Ga1−xInxSb superlattice
(SL) infrared detectors were proposed [27] by Smith and
Maihiot in 1987. By alloying GaSb (the lattice constant
about 6.1 Å) with InSb (6.4 Å), because of the strain in the
growth plane, the energy of the conduction band (CB) in
InAs shifts downward while the energy level of the valence
band (VB) in GaInSb splits into the heavy hole (HH) level
and light hole (LL) level, respectively, where the energy of
the HH level is higher than the original top VB in GaSb. As
a result, to reach a fixed energy band gap, the layers of the
InAs=GaInSb SL are made narrower than the InAs=GaSb
SL, thereby increasing the optical absorption efficiency.
Such strain engineering has led to the invention of high-
performance long-wavelength SL infrared detectors [28].
A similar physics idea may guide the construction of a

large-gap QSHI. Based on the strain effects described
above, we can reach the same inverted band structure with
narrower QWs in strained-layer InAs=GaInSb, comparing
to unstrained InAs=GaSb. The hybridization-induced gap
should increase in such narrower QWs primarily due to the
enhanced overlap of electron and hole wave functions. In
addition, due to the energy splitting of the HH and LH in
GaInSb, the Fermi surface of electrons would better match
with the Fermi surface of holes, which also help to reduce
the residual nonhybridized carriers.
Figures 1(a)–1(c) show calculated band structure of

strained InAs=Ga1−xInxSb QWs with different indium
concentrations (x ¼ 0.20, 0.25, 0.32) by the eight-band
Kane model. The results indicate that a ∼20 meV hybridi-
zation gap could be attained in the [100] direction in
InAs=Ga0.68In0.32Sb QWs, which is about a fivefold
enhancement from the value ∼4 meV in unstrained
InAs=GaSb QWs. Depending on gating conditions, the
measured bulk gap is around this value. The wafers we used
for the present experiment were grown by molecular beam
epitaxy (MBE). As an example, the structure of a 9.5 nm
InAs=4 nm Ga0.75In0.25Sb QWs is shown in Fig. 1(e).
Figure 1(f) is a transmission electron microscope (TEM)
photograph of an InAs=Ga0.68In0.32Sb wafer; it shows that
the crystalline structure remains coherent across the het-
erostructure interfaces regardless of ∼1.5% in-plane strain.
Transport properties of bulk states in strained-layer

InAs=GaInSb QWs.—In order to directly measure the bulk
conductance, we fabricate dual-gated Corbino devices.

In this case, the edge conductance is shunted and has no
contribution to the signals. Figures 2(a), 2(c) and 2(b), 2(d)
show the traces of the conductivity versus front-gate
voltage Vfront measured from a Corbino device made by
the InAs=Ga0.75In0.25Sb QWs at temperature T ∼ 20 mK,
with back gate voltage Vback ¼ 0 V and Vback ¼ 4 V,
respectively. At the CNP, the conductivity show dips,
indicating the entrance into an energy gap. For more positive
Vback, the bulk band becomes more inverted, resulting in a
less insulating bulk. Nevertheless, the bulk conductivity is
still negligible at low temperature, about 100 MΩ per
square at 20 mK for the Vback ¼ 0 V case, and about
25 MΩ per square at 20 mK for the Vback ¼ 4 V case.
Note that even for the Vback ¼ 0 V case, the ncross value of
this wafer is larger than 2 × 1011 cm−2, corresponding to
the modestly deep-inverted regime. Hybridization gaps with
residual conductivity have been commonly reported in
deeply inverted InAs=GaSb QWs [6,8,12,13]; this is the
first time that a substantially insulating hybridization gap is
observed at low temperature.
Electron-hole hybridization is most favored when the

Fermi momentum of electrons keF and holes khF is equal.
Under in-plane magnetic field B==, applied along the x axis
of the example, Lorenz force gives tunneling carriers
additional momentum along the y axis, resulting in a
relative shift of band dispersions Δky ¼ −eBΔhzi=h

FIG. 1. Calculated band dispersions and wafer structures
of the strained InAs=GaInSb QWs. [(a)–(c)] Calculated bulk
band structure of the InAs=Ga0.80In0.20Sb (8.7=4 nm) QWs,
InAs=Ga0.75In0.25Sb (9=4 nm) QWs, and InAs=Ga0.68In0.32Sb
(8=4 nm) QWs; CB1, VB1 and CB2, VB2 are bands of different
spin component. (d) Schematic drawing of band dispersion (both
bulk states and edge states) in the InAs=GaInSb QSHI system.
(e) Wafer structures of the strained-layer InAs=Ga0.75In0.25Sb
QWs used for experiments. (f) Shown here as an example, a TEM
photograph of the strained InAs=Ga0.68In0.32Sb wafer; blue and
red lines are a guide for the eyes.
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3 × 1011 cm−2. In addition, the helical edge conductance
decreases under either perpendicular or in-plane magnetic
fields, indicating the opening of mass gaps in the edge
states. Remarkably, we found that the edge conductance
and the magnetic response are correlated with vF, which
could be well controlled by lattice strain and the gate
voltages.
Strain effect in InAs=GaInSb.—Strain engineering is a

common way to modify the band structure and physical
properties for semiconductor materials, and recently for
topological materials [25,26]. Specific to the InAs=GaInSb
system, the strained-layer InAs=Ga1−xInxSb superlattice
(SL) infrared detectors were proposed [27] by Smith and
Maihiot in 1987. By alloying GaSb (the lattice constant
about 6.1 Å) with InSb (6.4 Å), because of the strain in the
growth plane, the energy of the conduction band (CB) in
InAs shifts downward while the energy level of the valence
band (VB) in GaInSb splits into the heavy hole (HH) level
and light hole (LL) level, respectively, where the energy of
the HH level is higher than the original top VB in GaSb. As
a result, to reach a fixed energy band gap, the layers of the
InAs=GaInSb SL are made narrower than the InAs=GaSb
SL, thereby increasing the optical absorption efficiency.
Such strain engineering has led to the invention of high-
performance long-wavelength SL infrared detectors [28].
A similar physics idea may guide the construction of a

large-gap QSHI. Based on the strain effects described
above, we can reach the same inverted band structure with
narrower QWs in strained-layer InAs=GaInSb, comparing
to unstrained InAs=GaSb. The hybridization-induced gap
should increase in such narrower QWs primarily due to the
enhanced overlap of electron and hole wave functions. In
addition, due to the energy splitting of the HH and LH in
GaInSb, the Fermi surface of electrons would better match
with the Fermi surface of holes, which also help to reduce
the residual nonhybridized carriers.
Figures 1(a)–1(c) show calculated band structure of

strained InAs=Ga1−xInxSb QWs with different indium
concentrations (x ¼ 0.20, 0.25, 0.32) by the eight-band
Kane model. The results indicate that a ∼20 meV hybridi-
zation gap could be attained in the [100] direction in
InAs=Ga0.68In0.32Sb QWs, which is about a fivefold
enhancement from the value ∼4 meV in unstrained
InAs=GaSb QWs. Depending on gating conditions, the
measured bulk gap is around this value. The wafers we used
for the present experiment were grown by molecular beam
epitaxy (MBE). As an example, the structure of a 9.5 nm
InAs=4 nm Ga0.75In0.25Sb QWs is shown in Fig. 1(e).
Figure 1(f) is a transmission electron microscope (TEM)
photograph of an InAs=Ga0.68In0.32Sb wafer; it shows that
the crystalline structure remains coherent across the het-
erostructure interfaces regardless of ∼1.5% in-plane strain.
Transport properties of bulk states in strained-layer

InAs=GaInSb QWs.—In order to directly measure the bulk
conductance, we fabricate dual-gated Corbino devices.

In this case, the edge conductance is shunted and has no
contribution to the signals. Figures 2(a), 2(c) and 2(b), 2(d)
show the traces of the conductivity versus front-gate
voltage Vfront measured from a Corbino device made by
the InAs=Ga0.75In0.25Sb QWs at temperature T ∼ 20 mK,
with back gate voltage Vback ¼ 0 V and Vback ¼ 4 V,
respectively. At the CNP, the conductivity show dips,
indicating the entrance into an energy gap. For more positive
Vback, the bulk band becomes more inverted, resulting in a
less insulating bulk. Nevertheless, the bulk conductivity is
still negligible at low temperature, about 100 MΩ per
square at 20 mK for the Vback ¼ 0 V case, and about
25 MΩ per square at 20 mK for the Vback ¼ 4 V case.
Note that even for the Vback ¼ 0 V case, the ncross value of
this wafer is larger than 2 × 1011 cm−2, corresponding to
the modestly deep-inverted regime. Hybridization gaps with
residual conductivity have been commonly reported in
deeply inverted InAs=GaSb QWs [6,8,12,13]; this is the
first time that a substantially insulating hybridization gap is
observed at low temperature.
Electron-hole hybridization is most favored when the

Fermi momentum of electrons keF and holes khF is equal.
Under in-plane magnetic field B==, applied along the x axis
of the example, Lorenz force gives tunneling carriers
additional momentum along the y axis, resulting in a
relative shift of band dispersions Δky ¼ −eBΔhzi=h

FIG. 1. Calculated band dispersions and wafer structures
of the strained InAs=GaInSb QWs. [(a)–(c)] Calculated bulk
band structure of the InAs=Ga0.80In0.20Sb (8.7=4 nm) QWs,
InAs=Ga0.75In0.25Sb (9=4 nm) QWs, and InAs=Ga0.68In0.32Sb
(8=4 nm) QWs; CB1, VB1 and CB2, VB2 are bands of different
spin component. (d) Schematic drawing of band dispersion (both
bulk states and edge states) in the InAs=GaInSb QSHI system.
(e) Wafer structures of the strained-layer InAs=Ga0.75In0.25Sb
QWs used for experiments. (f) Shown here as an example, a TEM
photograph of the strained InAs=Ga0.68In0.32Sb wafer; blue and
red lines are a guide for the eyes.
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Figure 6.18: [Adapted from Ref. 190] Arrhenius plots for InAs/GaSb (open squares), 

InAs/Ga0.8In0.2Sb (open circles), InAs/Ga0.75In0.25Sb (filled diamonds), and InAs/Ga0.68In0.32Sb 

(filled circles).  Energy gaps are calculated based on fitting +]] ∝ M
V

∆
#ÉÑÖ, shown as the dashed 

lines in the plot. 

 

 As an initial step in characterizing the shot noise in these 2DTIs, we sought to measure 

the noise in Corbino structures of InAs/Ga0.68In0.32Sb to identify any noise contributions from the 

bulk or contacts.   

 

6.5.1  Device Structure and Measurement Setup 

 Figure 6.19a229 is a colorized SEM image of an example Corbino device, with 

inner/outer diameters of 800/1200 µm.  The wafers used were grown by G. Sullivan by 

molecular beam epitaxy.  The full wafer composition is given in Appendix 1.  The structures 

were fabricated by the photolithography and etching steps outlined in Section 4.1 and Appendix 

2.  Figure 6.19b is a schematic of the final stage wafer layers, and Figure 6.19c depicts the band 

structure of the CQWs.   

(tunneling distance Δhzi is limited by one-half thickness
of the QWs). Consequently, carrier hybridization is
suppressed due to momentum mismatch, rendering the
QWs as a bilayer semimetal. As shown in Figs. 2(a)
and 2(b), the gap at the CNP is gradually closed with an
increasing B==. Similar behaviors have also been observed
in the InAs=Ga0.80In0.20Sb QWs [Fig. 2(e)] and InAs=
Ga0.68In0.32Sb QWs [Fig 2(f)]. This observation agrees with
the behavior of a hybridization gap under the in-plane
magnetic field, but in contrast to the behavior of the
insulating gap observed in a shallowly inverted InAs=
GaSb QW [23], where the bulk gap does not show sign of
closing in a very high field. Under perpendicular magnetic

field B⊥, the bulk becomes more insulating due to
localization effects, as shown in Figs. 2(c) and 2(d).
Information of the bulk gaps can be further obtained from

temperature dependent conductance. Figure 2(g) shows the
Arrhenius plots of Corbino devices made of strained-layer
InAs=Ga1−xInxSb QWs (x ¼ 0.20, 0.25, and 0.32) and the
shallowly inverted InAs=GaSb QWs (data adapted from
Ref. [10] at B ¼ 0 T). It lacks the exponential dependences
in the tail regime for the strained-layer wafers; the transport
there is more like variable-range hopping. Indeed, this is a
characteristic feature for transport in the hybridization gap, as
discussed in Ref. [8]. At higher temperatures, the hybridi-
zation gap values can be estimated by fitting the Arrhenius
plots, which is∼66 K for the shallowly inverted InAs=GaSb
QWs, ∼120 K for the InAs=Ga0.80In0.20Sb QWs, ∼130 K
for the InAs=Ga0.75In0.25Sb QWs, and ∼250 K for the
InAs=Ga0.68In0.32Sb QWs. Overall, larger hybridization
gaps have been achieved by strain engineering, in reasonable
agreement with the calculations.
Controllable helical edge states with long characteristic

length.—We now turn to the helical edge properties of
strained-layer InAs=Ga0.75In0.25Sb QWs. Figure 3(a) shows
the longitudinal resistanceRxx-Vfront traces of a100 × 50 μm
Hall bar device with various Vback at T ∼ 20 mK. Here the
measuredRxx solely results from the edge channels, since the
bulk is fully insulating at such low T. At Vback ¼ 0 V,
the resistance peak is about 115 kΩ, corresponding to a
characteristic length λφ (which refers to a length scale at
which dissipationless edge transport breaks down and
counterpropagating spin-up and spin-down channels equili-
brate) of about 11 μm. The λφ of different devices made by
this wafer typically range from ∼5 to 10 μm, significantly
longer than those in previous studies [5,10] of the QSHI.
Moreover, the λφ can be tuned by gate: as shown in
Fig. 3(a) the resistance peak values gradually decrease with
decreasing Vback (namely, less inverted), indicating that the
λφ increase from ∼6 μm at Vback ¼ 4 V to ∼11 μm at
Vback ¼ 0 V. (Note that for this device the back-gate bias

FIG. 3. Helical edge transport in strained-layer InAs=Ga0.75
In0.25Sb QWs. Rxx-Vfront traces measured from (a) a 100 ×
50 μm Hall bar device and (b) a 10 × 5 μm Hall bar device
at T ∼ 20 mK with Vback ¼ 0, 1, 2, 3, and 4 V. The edge
characteristic length increases with decreasing Vback. The inset
in (a) shows the λφ and the ncross values at different back-gate
bias Vback.

FIG. 2. Transport data of bulk states from Corbino devices.
G-Vfront traces of a InAs=Ga0.75In0.25Sb Corbino under different
in-plane magnetic field at (a) Vback ¼ 0 V and (b) Vback ¼ 4 V.
G-Vfront traces under different perpendicular magnetic fields at (c)
Vback ¼ 0 V and (d) Vback ¼ 4 V. G-Vfront traces under different
in-plane magnetic fields for (e) a InAs=Ga0.80In0.20Sb Corbino
and (f) a InAs=Ga0.68In0.32Sb Corbino. (g) Arrhenius plots for
InAs=GaSb QWs (open squares), InAs=Ga0.80In0.20Sb QWs
(open circles), InAs=Ga0.75In0.25Sb QWs (filled diamonds),
and InAs=Ga0.68In0.32Sb QWs (filled circles). Energy gaps are
deduced by fitting Gxx ∝ expð−Δ=2kBTÞ, as shown by straight
dash lines in the plot. Here kB is the Boltzmann constant.
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Figure 6.19: [Adapted from Ref. 229]  a) Colorized SEM image of an example Corbino device.  

Yellow denotes the inner and outer electrodes, and blue marks the area of the top gate.  b) 

Diagram of device structure. c) Band structure of the CQW. 

 

From Chapter 2, for a two-terminal device at finite temperature, we expect the total 

current noise spectral density (A2/Hz) to be given as 

∂ø = 3 ∙ 2M) coth g ~∑

!zÑê
h + (1 − 3) ∙ 4stE+, (6.16) 

where I and V are the current and voltage bias across the junction, G is the two-terminal 

conductance, and F is the Fano factor, a measure of how the high bias (M' ≫ 2stE) shot noise 

compares to the ideal Poissonian value, ∂ø = 2M).  Equation 6.16 is a phenomenological 

expression designed to give the correct Johnson-Nyquist noise (4stE+) at I,V = 0 and a bias-

independent Fano factor in the limit M' ≫ 2stE.  Shot noise and thermal noise are expected to 

be white over the frequency ranges of interest. 

 As discussed in Section 2.8, as the length of a diffusive conductor increases beyond the 

inelastic mean free path for scattering energy out of the charge carriers, electron-phonon 

interactions cause shot noise to decay with increasing length until it is fully suppressed when the 
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electrons have thermalized to the phonon temperature.54,73,230  Due to the relatively long length 

between contacts, we expect to be in the limit of fully suppressed shot noise from the 2D bulk.   

 In considering shot noise contributions arising at contact barriers, we define the contacts 

as a series combination of gold to InAs then InAs to the hybridized InAs/GaInSb interface.  

From Section 6.1, we do not expect any significant barrier between Au and InAs.191,194  At the 

InAs to InAs/GaInSb interface, however, there can be some band offset when the Fermi level is 

in the hybridization gap.  This band offset can act as a contact barrier that produces shot noise, 

analogous to noise-producing Schottky diodes.231     

 Noise measurements were first performed using the broadband RF method described in 

Section 4.4.  Then, to clarify the absolute magnitude of the noise, we also employed the low 

frequency noise spectroscopy method outlined in Section 4.5.   

 

6.5.2  Results and Analysis 

 In the initial RF noise measurements, at high temperatures, thermal excitation of carriers 

across any hybridization gap is sufficient to yield a conductive bulk.  At 100K, 
;ø

;∑
 measurements 

of the first sample showed a two-terminal resistance of about 200 W, with approximately Ohmic 

response.  As expected, the two-terminal zero-bias resistance increased with decreasing 

temperature (Figure 6.20a).  By 5 K, the resistance had increased to 10 kW, which corresponds 

to a square-resistance, *≤< =
!\

õú�
–Éù—
–[=

Ü
, of roughly 155 kW, where rin,out correspond to the radii of 

the of the inner/outer electrodes.  At 5 K, when the device is positively top-gated to populate the 

InAs QW, the two-terminal resistance dropped to only 80 W at Vg = 0.9 V.  In the higher 

temperature range of 30 – 100 K, the lock-in detected change in noise power is essentially zero 
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and flat with applied bias up to 50 µA.  Around 20 K, however, shot noise as a function of 

current becomes detectable, and increases with decreasing temperature down to 5 K (Figure 

6.20b).  The critical temperature for the onset of shot noise approximately corresponds to the 

temperature at which conduction in the 2D bulk gaps out.190  Additionally, when the positive 

gate voltage is applied to the device, closing the bulk gap, the inferred current noise is again 

roughly flat with increasing bias (Figure 6.20b).   

 

 

 



 184 

 

Figure 6.20: [Adapted from Ref. 229]  a) Zero-bias two-terminal resistance as a function of 

temperature.  By 5 K, two-terminal resistance is approximately 10 kW, corresponding to a 

square resistance of about 155 kW.  b,c) Integrated differential current noise in RF bandwidth 

(~250 – 600 MHz) as a function of temperature (b) and gate voltage (c).  Shot noise is essentially 

fully suppressed at high temperatures and positive gate voltages, when the bulk is conductive.  

The shot noise contribution begins to turn on with increasing current around 20 K, as bulk 

transport gaps out, and continues to grow as temperature is decreased.   
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 Voltage noise was measured in additional devices at low frequencies.  At zero bias, the 

voltage noise was consistent with the Johnson-Nyquist expectations for the resistance obtained 

from preceding 
;ø

;∑
 measurements.  Again, the noise remained roughly constant with applied 

current at higher temperatures, but started to increase with increasing current below ~ 20 K 

(Figure 6.21a), indicative of the onset of some shot noise contribution.  The magnitude of the 

bias-dependent noise, however, was consistently much smaller and had a broader curvature 

around zero bias than expected if one naively applied Equation 6.16 for a given conductance and 

temperature, assuming a Fano factor of 1 and that all of the applied voltage contributes to the 

argument of the coth term (Figure 6.21). 

 

Figure 6.21: [Adapted from Ref. 229] a) Voltage noise minus the zero-bias voltage noise as a 

function of temperature.  The nonequilibrium noise is relatively flat with current above 20 K, but 

then begins to increase with decreasing temperature.  b)  Comparison of the measured noise to 

the expected noise based on Equation 6.16.  Assuming all of the applied bias is contributing to 

the shot noise, the magnitude of the noise at 3 K is much smaller than predicted, and the 

curvature about zero bias is much broader.   
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 Particularly motivated by the breadth of the curvature of the noise about zero bias, we 

attempt to model the noise based on the equivalent circuit of Figure 6.22.  The circuit is 

essentially three resistors: two contact resistances (taken to be identical for simplicity) and a bulk 

resistance representing the contribution from the 2D Corbino bulk.  We assume the band offset at 

each InAs-InAs/GaInSb contact is the dominant source of contact resistance that can act as a 

barrier to produce shot noise.  In the simplest case, we assume both the bulk resistance, Rb, and 

the contact resistances, Rc, are Ohmic, with total device resistance * = 2*± + *í.  More 

generally, to account for a non-Ohmic device, the resistances should be differential resistances, 

;∑

;ø
, found self-consistently under biasing conditions such that the total voltage across the three 

resistors in series is the applied dc bias across the device, ';~Ø =
§∑—É—

§W@££	z©
, where R is the total 

two-terminal device resistance, Vtot is the total dc voltage applied by the DAQ, and 300 kW 

accounts for the two 150 kW current-limiting series resistances on either side of the device.  In 

the temperature range covered in this study, the device was still relatively Ohmic, and thus 

unlikely to be in the limit of Poole-Frenkel hopping transport, a mechanism by which electrons 

can move through an insulator under an electric field by hopping between localized states due to 

random thermal fluctuations that allow the electrons to briefly gain sufficient energy to be in the 

conduction band before relaxing back into another localized state.232  As temperature approaches 

zero, and the system reaches a limit in which all carriers are frozen out, it would be necessary to 

reevaluate the primary charge transport mechanism.  In our simplified model, however, the bulk 

is considered diffusive and large relative to the inelastic electron-phonon scattering length scales, 

and therefore should only contribute to the Johnson-Nyquist noise, and all nonequilibrium shot 

noise should arise at the contacts.  Factoring in finite temperature contributions, including 
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thermal noise and that the voltage dropped across each contact is )*± = '±, the total voltage 

noise in the Corbino should be33 

∂∑ = 43M)*±! coth g
~∑$
!zÑê

h + 4stE(*í + 2(1 − 3)*±). (6.17) 

 Under this model, at high bias (M'± ≫ 2stE), the SV(I) data can be fit to a line, with slope 

m = 4eFRc
2 and intercept b = 4kBT(Rb+2(1-F)Rc) = 4kBT(R – 2FRc).  The linear fits can thus be 

used to derive values for the Fano factor and contact resistance.  Figure 6.22b is a comparison of 

Equation 6.17 with F and Rc found by the high bias linear fits to the voltage noise measured at 3 

K in the low frequency setup.  This model seems to explain the voltage scale of the rounding 

near zero bias, with only a fraction of the applied voltage actually dropping across each shot-

noise-producing contact.   
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Figure 6.22: [Adapted from Ref. 229] Equivalent circuit (a) and comparison to data (b) of the 

model described by Equation 6.17, with R = 4.34 kW, F = 5.76 ± 0.2, and Rc = 217 ± 6 W.  Both 

contact resistances and the resistance of the bulk contribute to the Johnson-Nyquist noise, but 

any contribution to the shot noise from the bulk is suppressed, leaving only contributions from 

the two contacts.  Voltage division between contacts and bulk accounts for the low bias 

curvature scale, but implies surprisingly large Fano factors for the shot noise produced by the 

contacts. 

 

 Figure 6.23 plots the Fano factors and contact resistances derived from linear fitting of 

the high bias data from an example device measured at low frequency.  Positive and negative 

current data were fitted separately due to the asymmetric nature of the SV(I) curves (present even 

when the I-V response is Ohmic).  We attribute this asymmetry to differences in the inner and 

outer contacts arising during the etching processes of the fabrication.  The contact resistances 

found by the high bias linear fits are generally small, on the order of 10% or less of the total 

device resistance.  While the error bars are obtained from reasonable goodness of fits for each 
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temperature individually, the degree of scatter among all the data points suggests the systematic 

uncertainties are comparable to or greater than any trend with temperature.  At higher 

temperatures, the Fermi distribution of carriers in the metal is broadened, and the bulk of the 2D 

interface (where the GaInSb hole and InAs electron QW states hybridize to form the bulk gap) 

should have greater thermal activation of carriers between the lower and upper hybridized bands.  

Additionally, when the Fermi level lies in the gap, disorder creates a spatially varying energy 

landscape within the 2D bulk, which localizes residual charge carriers as temperature goes to 

zero.202  Naively, then, one would expect higher free carrier densities at higher temperatures 

would yield lower contact resistances as temperature is increased.  The contact resistances 

inferred from our model do not appear to fit this trend, but we have excluded any disorder effects 

and have not attempted to incorporate the Fermi level pinning or charge transfer at the contacts, 

which could influence the effective height and width of any barrier at the InAs to InAs/GaInSb 

interface. 
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Figure 6.23: [Adapted from Ref. 229] Fano factors (a) and contact resistance (b) derived from 

linear fits at high bias SV(I) data taken at low frequency for the model described by Equation 

6.17.  Error bars are calculated based on standard deviations of the slope and intercept of the 

fits.  Contact resistance is generally small relative to the total device resistance.  Fano factors 

tend to increase with decreasing temperature.   

 

 The inferred Fano factors tend to increase with decreasing temperature, as expected for a 

Schottky-like contact.  In many cases, however, and particularly in the low-temperature limit, the 

derived values of F are greater than one, up to over 10 in some cases.  This could indicate either 

some contribution to the shot noise from the bulk that was not captured by the model, or a noise-

enhancing process at the contacts.  In considering possible contributions from the bulk, we 

consider that as thermal activation of carriers over the gap in the 2D bulk is suppressed at lower 

temperatures, disorder can lead to both puddles of charge149 and residual charge202 bound to 

localized states.  As discussed in Section 3.7, tunneling through this irregular landscape could 

contribute to shot noise.  The 2D bulk is essentially in the macroscopic limit, however, and if the 

system were in the limit of many puddles or localized states, the net shot noise should be fully 
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suppressed, similar to the 
R

Z
 reduction of shot noise in N identical tunnel junctions in series77 

(Section 2.7).  This leads us to believe the shot noise arises at a small number of interfaces.   

 Shot noise-enhancing processes are associated with positive correlations between current 

pulses.  One possibility for a noise-enhancing process at low temperatures in these devices is 

positive feedback between tunneling electrons and space charge near one of the contacts.  This 

mechanism for enhanced Fano factors was first put forth by Reklaitis and Reggiani,233 who 

modelled a single barrier heterostructure of GaAs/Al0.25Ga0.75As.  Enhancement is expected 

when transport is dominated by tunneling across a barrier, and the space charge region preceding 

the barrier is sufficiently active to drive the transmission probability.   

 

Figure 6.24: [Adapted from Ref. 233] Enhanced noise model of Reklaitis and Reggiani.  

Electrons tunneling the barrier (a) decrease the barrier energy as seen by electrons coming from 

the cathode as a result of the positive feedback between space charge in the layer preceding the 

barrier and the transmission probability for electrons tunneling through the barrier.  

Consequently, more electrons will succeed in tunneling (b).   

 

Figure 6.24 depicts their model, in the limit that the frequency of the current fluctuations 

is smaller than the inverse of the transit time; an increase in the instantaneous current through the 

Enhanced shot noise from tunneling and space-charge positive feedback
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We propose a mechanism which can lead to shot-noise enhancement when electronic transport is controlled
by tunneling. Numerical simulations performed for a single barrier heterostructure made with
GaAs/Al0.25Ga0.75As at 300 K evidence an increase of the Fano factor up to a value of 7 at intermediate bias
voltages significantly larger than the thermal value KT/e in the region of positive differential resistance. The
positive feedback between space charge and single electron tunneling probability is ultimately responsible for
the super-Poissonian pulse distribution so found.

I. INTRODUCTION

The knowledge of the current voltage (I–U) characteris-
tic of a semiconductor device provides valuable information
of both: its physical properties and potential applications.
However, by representing an average of several microscopic
parameters of the material, the I–U characteristic alone can-
not give details of the interaction processes undergone by
charge carriers. In particular, correlations among carriers re-
main completely hindered. A suitable way to address this
issue is to complement the above knowledge with that of an
excess noise. To this purpose, shot noise is the electrical
fluctuation due to discreteness of the charge which provides
direct information on the correlation of different current
pulses. A convenient analysis of shot noise is usually per-
formed by introducing the dimensionless Fano factor #$0
defined as #!SI(0)/(2qI), SI(0) being the spectral density
of current fluctuations at low frequency, I the current flowing
in the device and q the elementary quantum of charge deter-
mining I. In the absence of correlation between current
pulses it is #!1, and this case corresponds to full shot noise.
Deviations from this ideal case is a signature of existing
correlations between different pulses and the two possibili-
ties of suppressed !i.e., #"1) and enhanced !i.e., ##1) shot
noise are in principle possible.
Shot-noise suppression is associated with a negative cor-

relation between current pulses and has been theoretically
predicted and experimentally evidenced in a variety of elec-
tron devices and mesoscopic structures.1 Among the mecha-
nisms responsible for shot-noise suppression2 we mention
long-range Coulomb interaction !space-charge"3–5 and
screening,6 tunneling;7–12 Pauli principle;13 inelastic scatter-
ing;14–16 and fractional charge.17,18
Shot-noise enhancement is associated with a positive cor-

relation between current pulses. However, the mechanisms
responsible for enhancement have not received the same con-
sideration of those responsible for suppression. To our
knowledge, the evidence of shot-noise enhancement has
been limited to the case of a double barrier resonant
diode19–22 where theoretical models for its explanation have

been also proposed.21,23 The mechanism responsible for the
enhancement is based on the existence of a negative differ-
ential conductivity !NDC" region in the current–voltage
characteristic. Because of that, as remarked by Landauer,24
the shot-noise enhancement so found is analogous to the
critical fluctuations in the circuit already predicted by Pytte
and Thomas.25
The aim of this paper is to propose a mechanism for, and

show theoretical evidence of, enhanced shot noise. Such an
enhancement is expected when transport properties are con-
trolled by tunneling across a barrier, and the space charge
region preceding the barrier is sufficiently active to drive the
tunneling transmission probability. Surprisingly, the joint ac-
tion of two mechanisms which separately can lead to sup-
pressed shot noise is thus found to provoke the opposite
effect. The physical picture for the current fluctuations at
frequency lower than the inverse of the transit time is de-
picted in Fig. 1 and is described as follows. An increase of
instantaneous current through the barrier would result in a
decrease of the charge density in the potential well and in
turn in an increase of the potential drop as measured between
the left contact and the bottom of the barrier. As a conse-
quence, the potential barrier seen by electrons coming from
the cathode is reduced, their tunneling probability will in-
crease and more electrons will cross the barrier. Conversely,
if the instantaneous current fluctuations decrease their value,
the potential barrier seen by electrons coming from the cath-
ode is raised, their tunneling probability will decrease and

FIG. 1. Enhanced shot noise is obtained because electrons tun-
neling the barrier !a" decrease the barrier energy seen by electrons
coming from the cathode as a result of the positive feedback be-
tween space charge in the layer before the barrier and tunneling
probability through the barrier. As a consequence more electrons
will succeed in tunneling !b".
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barrier results in a decrease of the charge density in the potential well, yielding an increase of the 

potential drop as measured between the left contact and the bottom of the barrier.  As a result, the 

potential barrier seen by electrons from the cathode is reduced, and the electron tunneling 

probability increases, such that more electrons will pass through the barrier.  Conversely, a 

decrease in the instantaneous current fluctuations, the potential barrier seen by electrons from the 

cathode is raised, and the electron tunneling probability will decrease, and fewer electrons will 

tunnel through the barrier.  Therefore, the coupling between space charge and tunneling 

probability amplifies the fluctuations through the Poisson equation, acting as a positive feedback, 

which should result in an enhancement of the shot noise.  Reklaitis and Reggiani found Fano 

factors up to 7 as a result of the positive feedback between tunneling probability and a build-up 

of space charge near the barrier.  While difficult to precisely model our system for space charge 

effects, we believe this could be one reasonable explanation for the large Fano factors derived 

from the data.  The tendency for the Fano factor to increase with decreasing temperature, as the 

bulk becomes more gapped, would be consistent with an increase in space charge near the 

contacts. 

 

6.5.3  Conclusions 

 We have performed RF and low frequency noise spectroscopy measurements on 

InAs/GaInSb Corbino structures to gain a better understanding of the transport properties and 

shot noise characteristics of the 2D bulk and the contacts.  At higher temperatures, voltage noise 

remains relatively current-independent, staying roughly constant about the Johnson-Nyquist 

thermal noise level.  As temperature is decreased, and the 2D bulk is expected to gap out, 

however, shot noise becomes detectable.  Naively, treating the device as a single noise source, 
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the magnitude of the shot noise in the high bias, linear limit appears much smaller than 2eI, and 

the curvature of the noise about zero bias is too broad for the given conductance and temperature 

of the device.  We have found the noise fits well to a model in which the applied bias is dropped 

over two contacts and the bulk, wherein only the voltage dropped over the contact resistances 

contributes to the shot noise, while all three contribute to the thermal noise.  This model of 

voltage division between the bulk and contacts reproduces the low bias noise dependence with 

reasonably small contact resistances, but at the cost of anomalously large Fano factors.  The 

large Fano factors could be the result of some bulk noise contribution not accounted for in the 

model, or a noise-enhancing process at the contacts.  One such process theorized to produce 

large Fano factors is positive feedback between the tunneling probability and space charge at the 

interface of the bulk and contacts.  These findings show that contacts to bulk 2DTI interfaces can 

have nontrivial noise response.   

 

6.6  Future Directions 

 These initial noise studies in InAs/GaSb quantum wells provide an interesting first look 

at noise processes at work in these two-dimensional topological insulators and are good 

indicators of promising next steps.  For example, it could be informative to perform systematic 

measurements on 1/f noise in Hall bars of InAs/GaInSb QWs.  While there was some 1/f noise at 

the lowest temperatures of the Corbino structures, we did not observe significantly large 1/f 

behavior in the spectra.  This is in contrast to an ongoing study in which large 1/f signals were 

measured in samples of monolayer WTe2 QWs (Figure 6.25a).  It may be that in the limit of only 

(ideally single) edge modes, 1/f noise can dominate over shot noise, but in the limit of 

macroscopic transport through the bulk, samples are less vulnerable to 1/f fluctuators.  An 
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interesting follow-up study could focus on 1/f spectroscopy, particularly in a lower temperature 

range than that covered above, in the edge transport of InAs/GaInSb bar-geometry devices.   

 

Figure 6.25: a) Comparison of spectra at highest measured current bias for a InAs/Ga0.68In0.32Sb 

Corbino device versus a WTe2 bar structure with edge mode conduction.  Despite a much larger 

current through the Corbino device, the WTe2 bar exhibits much larger 1/f noise.  b) Proposed 

device configuration for multiple source-drain contact separations along the same edge.  This 

setup could enable direct comparison of noise arising from the edge states when the device 

length is within the coherence length of the QSHI and when the device length is long, such that 

the helical edge modes are subject to backscattering processes.  c) Another proposed device 

geometry for comparing noise along the sample edge (using the diagonal contacts) versus 

through the bulk (using the horizontal or vertical contacts).   
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Another interesting comparison of the bulk noise versus edge state noise could use a 

multi-terminal device, similar to Figure 6.25c, to measure both SI,xx and SI,xy.  Any noise arising 

from the bulk could be directly compared to noise in the edge state while tuning temperature and 

gate voltage, as the bulk becomes gapped out.  Additionally, this may yield more clarity in 

discerning noise arising from the bulk from that arising at the contact interfaces. 

 While the fabrication of devices with edge lengths within the coherence length have 

proven difficult using the mask aligner UV photolithography method, recently acquired 

instruments may provide a solution for more precise pattern writing.  For example, a maskless 

photolithography system, using high power LED sources, promises submicron resolution and is 

compatible with many readily available photoresists.  The ability to design devices with shorter 

contact spacing could enable a much wider variety of future studies.  One informative example 

would be to study the shot noise between multiple contacts along the same edge (Figure 6.25b), 

with varying distances between the contacts, ranging from below to beyond the coherence 

length.  This could provide a clear picture of the evolution of noise as the edge modes become 

vulnerable to backscattering processes.  Furthermore, this could be particularly enlightening in 

understanding the interesting perpendicular magnetic field dependence observed by Du et 

al.,144,190 who found that the resistance plateaus in InAs/GaInSb QWs under perpendicular 

magnetic field first increased due to breaking time reversal symmetry, then began to decrease 

with further increasing of the field.  They attribute this behavior to a transition from helical edge 

states to chiral edge states.  Shot noise measurements could be an interesting parameter to 

observe in this transition, particularly for a long contact separation expected to be vulnerable to 

scattering in the case of helical transport but not chiral transport.  Multiple contacts along a 

single edge could also allow for more interesting measurement setups including a four-terminal 
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approach in which two outer contacts are current-biased, while the shot noise is measured 

between two inner contacts.  As fabrication methods improve, the possibilities for noise studies 

to contribute to the characterization of 2DTIs continue to expand. 
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Appendices 

 

Appendix 1 1838 Wafer Composition 

 

Layer # 

(from 

bottom) 

Layer Name Thickness 

(Å) 

Material 

0 Substrate - n-GaSb 

1 Smoother 3000 GaSb:Te 

2 Nucleation 300 AlSb 

3 Relaxer 5000 Al0.8Ga0.2Sb linearly graded to Al0.7Ga0.3Sb 

4 Lower barrier 500 Al0.7Ga0.3Sb 

5 Channel 1 doping 10 Al0.7Ga0.3Sb:Te 

6 Channel 1 spacer 30 Al0.7Ga0.3Sb 

7 Channel 1 80 InAs 

8 Channel 2 40 In0.32Ga0.68Sb 

9 Channel 2 spacer 20 Al0.7Ga0.3Sb 

10 Channel 2 doping 20 Al0.7Ga0.3Sb:Be 

11 Upper barrier 500 Al0.7Ga0.3Sb 

12 Cap 1 30 GaSb 

13 Cap 2 30 InAs 
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Appendix 2 Detailed Procedures for Fabrication of  InAs/Ga0.68In0.32Sb Devices 

Etchants: 

Make ahead of time: 

Citric Acid solution (for use in cocktail etchant and first selective etchant) 

a. 1g:1mL Monohydrate citric acid:H2O 

b. Needs to dissolve at least overnight 

c. Make ~100-200mL at a time 

d. Lasts few weeks 

Cocktail etchant 

a. 3:5:55:220 mL      H3PO4:H2O2:Citric acid:H2O 

Make during fabrication: 

Selective etchant #1 

a. 2:1 mL Citric acid solution:H2O2  (typically 10:5) 

b. Stir, wait 5 min before using 

Selective etchant #2 

a. 1:8 mL NH4OH:H2O 

Use pre-prepared: 

Transetch-N for Al2O3 

a. Heat in beaker at 70°  C, covered in foil 

 

Fabrication steps: 

1. Photolitho the mesa + contacts pattern 

a. S1813 resist, spin coat at 5000rpm for 1 minute 

b. Hot plate at 100°  C after spin-coating resist 

c. 135-140 dose 

d. Photolithography instructions to follow 

2. Develop for 30 seconds 

a. M319 developer 

3. Rinse with water, dry with blower, and bake at 105°  C for 1 min 

4. Let cool for 5 min 
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5. Soak in cocktail etch for 3-4 min 

a. Quantum well is 100 nm from the surface 

b. With back gate, need to go all the way through 

c. Test the etch rate of new etchants 

6. Soak in water for ~ 1 min, then soak in acetone and sonicate to remove resist, IPA, new 

water, and dry 

7. Selective etchant #1 to remove InAs cap 

a. Mix 10mL citric acid solution with 5mL hydrogen peroxide 

b. Let sit for ~5 min (can mix up while sample is soaking in water or acetone etc.) 

c. Soak in selective etch #1 for 45 seconds 

8. Soak in water, IPA, then dry 

9. Photolitho the contacts 

a. S1813 resist 

b. 135 dose 

10. Develop for 30-40 seconds 

a. M319 developer 

11. Soak in water, dry, and bake for 1 minute at 105° C 

12. Selective etchant #2 to etch down to QWs  

a. While sample is in photolitho or soaking in water, mix 1:8 of ammonium hydroxide :  

water 

i. NH4OH smells really bad, only mix under hood 

b. Soak in SE #2 for 3 minutes  

i. After ~3 min., the photoresist begins to break down 

13. Soak in water, dry 

14. Evaporate 10nm Ti / 50-100nm Au 

a. E-beam evaporator instructions to follow 

15. Lift-off 

a. Soak in acetone in the sonicator for at least 2 minutes 

b. IPA, water, dry 

16. ALD Al2O3 

a. 100° C 
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b. Choose recipe file (something like Al2O3 100° C) 

c. Change inner/outer reactor temps to 100° C 

i. Takes a bit (at least 20 min) for it to cool down from the default 150° C, so if 

possible start while doing evaporation or lift-off 

d. Follow instructions in binder 

e. Takes about 5 h 40 min to run 

i. Maximum time able to book on ALDS is 6 hours, so best to do this at night 

when hopefully no one will need the machine immediately after  

f. Set heaters back to 150° C when done 

17. (Next day) Photolitho windows to contacts 

18. Transetch-N for Al2O3 

a. Pour small amount of etch in beaker, wrap top in foil, and place on hot plate at 70° C 

b. Soak sample in etch for 4 minutes 

19. Soak in water, then acetone to remove resist (sonicate), IPA, fresh water, dry 

 

Other notes: 

• The process for bar structures is identical, except for the inclusion of an additional photo 

lithography step at the beginning 

o Before defining any of the device features, pattern and develop a large rectangular 

surface to remove the rough portions of the resist around the chip edges 

• Top side of wafer is teal (at edges can see where layers end) 

• Only use the plastic-tipped tweezers 

• Wafers are very brittle and will chip easily if using normal tweezers, especially when 

picking up when taped down 

• Have 3 pairs of tweezers on hand: 2 plastic-tipped, one for wet, one for dry, and 1 metal 

tipped for removing tape from mask aligner, evaporator, spin-coater, etc. 

• When soaking sample in etchants, developer, water, acetone, etc. use wet tweezer to 

move it around a bit 

• Be very careful with the water level in the sonicator, if it is too low, vibrations will be too 

strong and break the wafer 
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• If it seems like SE #2 didn’t reach the QWs, can try annealing in H2N2 forming gas at 

250° C for 5 min 

• In the new cleanroom, use the acid bench under the UV filtered lights for all etching 

processes except for the Transetch-N, which should be done in the normal light base 

bench 

 

Photolithography Instructions: 

1. Spin coat resist onto sample 

a. Typically S1813 

b. 5000 rpm for 1 min (standard saved recipe for 1813 in new spin-coater) 

c. Typically tape off-center (may need to put a larger chip on the vacuum holder in the 

center) 

d. Hot plate at 100° C for 1 min 

2. Start EVG program 

a. Login info: user: operator  password: retrainme 

3. Install 5” holder and plate 

4. Follow instructions on computer 

a. Except: easier to position sample (and tape it down, press tape with glove to make 

less sticky) when loading mask to get an approximate location 

b. Also make sure to use other chips on side of sample to prevent too much pressure 

from breaking sample 

5. When finished, remember to log off, take out plate and mask holder, and park the tray 

 

E-beam Evaporator Instructions: 

1. Grab gold crucible (refill if needed) 

2. Press stop.  Pressure will reach ~7E2 

3. Tape sample to plate 

4. Open door 

5. Use screwdriver to fix plate to ceiling of evaporator 

6. Turn to empty gold slot, and load gold crucible (don’t forgot to put in beads at bottom first) 

Turn back to Ti  
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7. Make sure substrate shutter is closed 

8. Close door and write initials on board 

9. Press start 

10. Wait to make sure pressure goes down (may need to press on door for a bit) 

11. After ~3h, turn on ion gauge to check pressure 

12. If P ~10-5 – 6, it’s ok to proceed 

13. Flip the two switches on the far left (in new cleanroom, these are no longer in the main room, 

so skip this step) 

14. Turn on main power 

15. Turn on power supply controller 

16. High voltage: press reset, then on 

17. Select film, and check that all the numbers are correct 

18. Double click start, then hit manual 

19. When rate is steady, open the shutter and zero the thickness 

20. Close shutter and bring rate back down to zero, stop 

21. Let crucible cool, then repeat for Au 

22. Turn everything off and let crucible cool for ~5 min  

23. Vent, open door, and remove sample 

24. Lift-off in acetone, sonicate 
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Appendix 3 Procedure for Cooling Down Janis Cryostat 

Beginning at Room Temperature 

If the system has been warm for a while (and particularly if it warmed up after being cooled to 

helium temperatures), it is best to pump the dewar jacket before cooling back down 

1. To pump out the jacket, use the red Edwards mechanical pump.  Roll it into the Faraday 

cage by using the wooden ramp. 

2. Double check that the valve to the jacket is closed (left side, bottom, with white metal 

“fences” on either side) 

3. Connect the end of tube on the pump to the jacket valve 

4. Pump smaller areas first: 1. All knobs closed (make sure pressure is dropping), 2. Open 

largest, bottom knob, 3. Open knob to tube 

a. *Do not open to a high pressure area (e.g. tube area which will be around 

atmospheric pressure) if the pump has reached max speed.  Stop pump, allow 

motor speed to drop to at most 10k rpm, then open knob slowly and restart pump 

5. Let the pressure reach at least 1E-4 mbar before slowly opening the valve to the dewar 

jacket 

6. Pumping out the jacket will take several hours/all day depending on the time since last 

pumping 

a. *Do not pump overnight.  If there is a power outage or something, and the jacket 

reaches atm it will be a big pain to pump down from scratch. 

7. When the pressure has reached ~1E-5 mbar (check notes on side for previous recordings), 

close valve tightly, close all knobs on pump and turn off pump.  Remove tube and replace 

cap on valve. 

 

Liquid Nitrogen Fill: 

1. Take off the pipe at the exhaust port 

2. Bring the liquid nitrogen dewar up to the door of the Faraday cage 

3. Connect the LN2 transfer line (rubber tube connected to metal tube) to the liquid port on 

the dewar.  Use the adjustable wrench to ensure a tight fit 

4. Open the back filling port and insert metal end of transfer line 
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5. Open liquid port on the dewar (not too much at first, just so that you can tell liquid is 

flowing) 

6. Hold the rubber tubing near the cryostat so that it doesn’t kink until it is frozen 

7. After a few minutes, you can open the dewar more. 

a. It’s open too much if the line starts to swing or shake.  

8. The fill is done when liquid helium starts to pour out of the exhaust. 

9. Close the dewar and warm up the line with the heat gun. 

10. When the rubber is no longer rigid, put on gloves, and remove the metal tube from the 

cryostat.  Replace the cap on the fill port. 

11. Use the heat gun to warm up the connection at the dewar, and then unscrew the line. 

12. Use the heat gun to warm up the exhaust, then wipe down and replace the pipe. 

 

 

Liquid Helium Fill: 

Need: 

1. At least 2/3 dewar of liquid helium 

2. Helium transfer line (if it has been awhile since last fill, pump the vacuum jacket on the 

line day before or during first few steps) 

3. Helium gas 

4. Liquid nitrogen and empty liquid nitrogen dewar 

a. Preferable to be able to use up a dewar in first step, then re-use it for next part 

b. At the very least use a dewar that was recently emptied (and is therefore still cold 

so will be faster to refill) 

Steps: 

1. Top off the liquid nitrogen (see steps for LN2 fill above) and let sit for at least an hour 

2. Open vent on nitrogen dewar, and let pressure drop to zero, keep open 

3. Purge the annular space with helium gas 

a. Close needle valve 

b. Close the valve to the annular space pump 

c. Connect the helium gas to the annular helium gas port (gold, in back right) 

i. Don’t forget to let gas run a bit to purge line 
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d. Open to the gas until the release valve pops up 

e. Close gas, and open to pump down 

f. Repeat 3 times, closing to the pump at the end 

4. Remove caps to both filling ports and the pipe extension of the exhaust 

5. Replace the pipe extension with a cap 

6. Connect copper pipe connector (keep closed at this point) to the helium gas tube and to 

front filling port 

a. Fit is not well-sealed, use Teflon tape to prevent leaking (listen for sound, feel for 

air) 

7. Set up the LN2 filling line as usual, taking extra care to make sure tube reaches the 

bottom of the reservoir 

a. If there is hissing around the tube, may also need to Teflon tape this port as well 

8. Open liquid valve on the dewar 

a. Liquid will start flowing quickly after initial high pressure, be quick about getting 

back to hold the line to prevent kinks after opening the dewar 

b. If you’re too slow, use the heat gun to warm up the line enough to get the tube in 

a favorable position 

9. Open the valve on the copper pipe to allow helium gas to pressurize the reservoir 

a. Check pressure on He gas regulator, want P~4-5 psi 

10. Signs the LN2 is all out of the reservoir 

a. Will take ~1.5-2 hours if the dewar is cold (much longer if not) 

b. If starting with a full cylinder, cylinder pressure will drop from ~1600 to ~1200 

c. There will be a distinct change in the sound of the nitrogen gas venting from the 

dewar 

d. Eventually the tube will go limp (you’re very late at this point) 

11. Let the helium gas continue to push out any remaining liquid nitrogen while warming the 

transfer line with the heat gun 

12. Remove the LN2 tube and replace the cap on the back fill port 

13. Keep the He gas open until it stops flowing (internal reservoir pressure ~5 psi) 

a. Meanwhile, close off dewar, put away LN2 line 

14. Close to the helium gas at the copper tube 



 206 

15. Open the knob closest to the back wall (to the rough pump) 

16. When pressure has dropped, VERY gradually open the small, red-topped knob to pump 

out any remaining nitrogen and the helium gas 

17. Pressure will eventually reach a stable pressure (manual says 65 mTorr, but usually we 

only get to 1-3 Torr) 

18. Repeat steps 13-17 at least one more time (This part also takes a couple hours) 

19. After pumping, close both knobs, and reopen He gas to backfill the reservoir 

20. Meanwhile, in the pump room, connect the right hand pump to the helium recovery line  

21. Open both switches to helium recovery 

22. Close helium gas and remove copper pipe. Replace cap on front filling port. 

23. Connect mesh tube to the exhaust port 

24. Set up the ramp and open the ceiling hatch inside the Faraday cage 

25. Put the O-ring, inner metal ring, and outer cap to the top of the LHe dewar 

26. Bring the dewar up the ramp so that the front wheels are hooked on the doorway of the 

Faraday cage. Place a chair or step stool at the base of the ramp 

27. Grab the gloves, and form a bow and arrow with the transfer line 

28. After relieving some pressure from the dewar (using gas port, not top), open the top of 

the dewar and insert the end of the transfer line without the vacuum port slowly into the 

dewar while the other end rests across the top of the dewar 

a. Insert just enough to be able to fit everything through the doorway 

29. Connect the helium gas to the vent on the dewar (don’t open yet) 

a. Want a relatively low pressure to start (~0.5-1.5 psi), once there is liquid, can 

increase pressure 

30. Wait until there is white steam flowing from the end of the transfer line, then open back 

filling port and prepare to insert the line into the reservoir 

31. When you can see the characteristic white flame, insert the transfer line as quickly as 

possible 

a. Ideally, it should be a straight shot down, but in practice, getting the transfer line 

down into the reservoir takes some wiggling and searching 

32. Open the needle valve, and open the annular space pump to cool the sample space 

33. Monitor the temperature and cylinder pressure 
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34. Once T ~ 30K, there should be liquid collecting, and you can increase the pressure and 

turn on the helium monitor 

a. Set to continuous monitoring during fill, turn back to on demand after 

35. Want at least 20 inches (ideally 23-24”) 

36. When ready to remove the transfer line, close the helium gas and remove the gas line 

37. Using gloves, open the vent on the dewar and pull the line up out of the dewar part of the 

way (so that it is out of the liquid inside the dewar) 

38. Quickly pull the other end out of the fill port (this is when it is important to have the 

ceiling hatch open) 

39. Quickly cap the port 

40. Roll dewar back out and pull transfer line out all of the way 

41. Put dewar back on the wall and connect to recovery line 

a. Return dewars and send email to Quinn for refill as soon as they are empty (so 

they don’t have time to warm up) for faster refills 

42. To cool down the sample below 4 K, open the needle valve all the way 

a. Need at least 3-4 Torr to stabilize at low temperatures (below 30 K) 
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Appendix 4 Conversion from Lock-In to Real Units for RF Measurements 

 

Let Xi be the number returned by the lock-in.  This number reflects the RMS value, so to get to 

the amplitude in units of volts XA,V  

u8,∑ =
2uN

0.901 ∗ 10
∗ (ÕM?ÕŒÃŒwŒÃÔ	ÕMÃÃŒ?ñ	ÚG	ïÚKs − Œ?) 

The 2 accounts for going from RMS to full amplitude, the 0.901 comes from taking the Fourier 

transform of a square wave, and the 10 is the scaling factor of the lock-in. 

 

The next step is to convert to dB based on the weighted average fit of the PE8040 log power 

detector typical response plot 

u;t = −41.2587211u8,∑ + 27.2182545 − 30 

Then to convert to A2/Hz 

u√ø = 10
yCÑ

R£ü  

Now, to arrive at the final value, we need to compare the lock-in value to the value from the 

DAQ (the DC baseline power) 

∞j	¥ÚıMÙ	(') −
1
2
(ïÚKs − Œ?)(') → ñË − +ËÈ¥ → u!

¯ˆü  

− 

∞j	¥ÚıMÙ	(') +
1
2
(ïÚKs − Œ?)(') → ñË − +ËÈ¥ → u!

¯ˆü  

= ∂ø	(u
!

¯ˆü ) 

where GBWP is the previously measured gain-bandwidth product (161.639 for Janis system with 

attocube probe). 

 

Calibration to account for the pick-up efficiency of the measurement system are ongoing and will 

result in additional considerations in the determination of the accurate value of the noise power. 
234  
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